Visn. Nac. Akad. Nauk Ukr. 2016. (2): 91-95
https://doi.org/10.15407/visn2016.02.091

І.N. Brodnikovskyi
Frantsevich Institute for Problems of Materials Science of National Academy of Sciences of Ukraine, Kyiv

SOLID OXIDE FUEL CELL 
According to the materials of scientific report at the meeting of the Presidium of NAS of Ukraine October 21, 2015

Abstract:
Solid oxide fuel cell (SOFC) is environmentally safe device that high-efficiently (~90%) converts the chemical energy of fuels into electricity and heat. Base material for manufacturing of SOFC is zirconia oxide stabilized in cubic phase. Ukraine has the largest deposit of zirconia minerals in Northern Hemisphere and experience for manufacturing of SOFC, in fact everything to organize high technological production of electrogenerators based on SOFC. This article gives short review of the scientific results of our team and the prospect of development of energetics of Ukraine.
Keywords: solid oxide fuel cell, zirconia powder, energy.

 

Language of article: ukrainian

REFERENCES

  1. Vasylyev O., Brychevskyi M., Brodnikovskyi I., Firstov S., Andrzejczuk M., Spychalski M., Lewandowska M., Kurzydlowski K.J., Steinberger-Wilckens R., Mertens J., Malzbender J. Nucleation and Growth Mechanisms of Zirconia Film Deposited on Porous Nickel Oxide – Zirconia Substrate by Electron Beam – Physical Vapor Deposition. Adv. Ceram. Sci. Eng. 2014. 3: 25. http://doi.org/10.14355/acse.2014.03.004
  2. Andrzejczuk M., Vasylyev O., Brychevskyi M., Dubykivskyi L., Smirnova A., Lewandowska M., Kurzydlowski K.J., Steinberger-Wilckens R., Mertens J., Haanappel V. Structural features and gas tightness of EB-PVD 1Ce10ScSZ electrolyte films. Materials Science-Poland. 2012. 30(3): 170. http://doi.org/10.2478/s13536-012-0025-0
  3. Grzonka J., Vereshchak V., Shevchenko O., Vasylyev O., Kurzydłowski K. Characterization of Sc2O3&CeO2-stabilized ZrO2 powders via co-precipitation or hydrothermal synthesis. Microsc. Microanal. 2013. 19(5): 29. http://doi.org/10.1017/S1431927613012270
  4. Suchaneck G., Ponomareva A., Brychevskyi M., Brodnikovskyi I., Vasylyev O., Gerlach G. Fractal analysis of surface topography of solid oxide fuel cell materials. Solid State Phenomena. 2013. 200: 293. http://doi.org/10.4028/www.scientific.net/SSP.200.293
  5. Brodnikovskyi I., Chedryk V., Vasyliv B., Ostash O., Vasylyev O. Microstructure, mechanical behavior and catalytic activity of NiO-ZrO2 anode composite. ECS Trans. 2010. 25(33): 133.
  6. Andrzejczuk M., Vasylyev O., Brodnikovskyi I., Podhurska V., Vasyliv B., Ostash O., Lewandowska M., Kurzydłowski K.J. Microstructural changes in NiO–ScSZ composite following reduction processes in pure and diluted hydrogen. Mater. Charact. 2014. 87: 159. http://doi.org/10.1016/j.matchar.2013.11.011
  7. Ushkalov L.M., Brodnikovskyi Y., Lysunenko N.O., Brychevskyi M., Vasylyev O., Vasyliv B. Diffusion processes between the barrier cathode layer and electrolyte of a solid oxide fuel cell. Physicochemical Mechanics of Materials. 2015. 51(4): 107. [in Ukrainian].
  8. Patent of Ukraine No 78992. Vasyliv B.D., Ostash O.P., Podhurska V.Y., Vasylyev O.D. Method for treatment of NiO-containing anode of solid oxide fuel cell. 10.04.2013.
  9. Patent of Ukraine No 94545. Ostash O.P., Prikhna T.O., Ivasyshyn A.D., Podhurska V.Y., Vasyliiev O.D. Heat-resisting material for fuel cells. 25.11.2014.
  10. Patent of Ukraine No 103244. Prikhna T.O., Ostash O.P., Ivasyshyn A.D., Podhurska V.Y., Basyuk T.V., Vasylyev O.D., Brodnikovskyi I.M., Sverdun V.B., Moshchil V.Y., Kozyrev A.V. Material for fuel cells. 10.12.2015.
  11. Prikhna T., Ostash O., Basyuk T., Ivasyshyn A., Sverdun V., Loshak M., Dub S., Podgurska V., Moshchil V., Cabioch T., Chartier P., Karpets M., Kovylaev V., Starostina O., Kozyrev A. Thermal stability and mechanical characteristics of densified Ti3AlC2-based material. Solid State Phenomena. 2015. 230: 140. http://doi.org/10.4028/www.scientific.net/SSP.230.140
  12. Vasyliv B.D., Podhurs’ka V.Ya., Ostash O.P., Vasyl’ev О.D., Brodnikovs’kyi E.M. Influence of reducing and oxidizing media on the physicomechanical properties of ScCeSZ–NiO and YSZ–NiO ceramics. Mater. Sci. 2013. 49(2): 135. http://doi.org/10.1007/s11003-013-9593-3
  13. Podhurs’ka V.Ya., Vasyliv B.D., Ostash O.P., Vasyl’ev O.D., Brodnikovs’kyi E.M. Structural transformations in the NiO-containing anode of ceramic fuel cells in the course of its reduction and oxidation. Mater. Sci. 2014. 49(6): 805. http://doi.org/10.1007/s11003-014-9677-8
  14. Brodnikovskii E.M. Solid oxide fuel cell anode materials. Powder Metall. Met. Ceram. 2015. 54(3): 166. http://doi.org/10.1007/s11106-015-9694-7
  15. Ostash O.P., Vasyliv B.D., Podhurs’ka V.Ya., Vasyl’ev O.D., Brodnikovs’kyi E.M. Influence of the temperature of redox cycling on the structure and physicomechanical properties of YSZ–NiO ceramics. Mater. Sci. 2015. 50(4): 571. http://doi.org/10.1007/s11003-015-9755-6
  16. Ostash O.P., Vasyliv B.D., Podhurs’ka V.Ya., Vasyl’ev O.D., Brodnikovs’kyi E., Ushkalov L.M. Optimization of the properties of 10Sc1CeSZ–NiO composite by the redox treatment. Mater. Sci. 2011. 46(5): 653. http://doi.org/10.1007/s11003-011-9337-1
  17. Vasylyev O., Brodnikovskyi I., Brychevskyi M., Pryshchepa I. NiO-10Sc1CeSZ anode: Structure and mechanical behavior. Adv. Solid Oxide Fuel Cells III: Ceram. Eng. Sci. Proc. 2008. 28(4): 361.