Visn. Nac. akad. nauk Ukr 2014, (10): 17—29
https://doi.10.15407/visn2014.10.017

О.H. Reznikov1, О.М. Polumbryk2, Y.H. Balion1, M.О. Polumbryk2
1Komissarenko Institute of Endocrinology and Metabolism of NAMS of Ukraine, Kyiv
2National University of Food Technologies, Kyiv

PRO- AND ANTIOXIDANT SYSTEMS AND PATHOLOGICAL PROCESSES IN HUMANS

Abstract: The review contains a new literature data and results of own investigations of antioxidant induced stress, which can cause structure changes of nucleic acids as well as amino acids, proteins, lipids and induce cancer and cardiovascular diseases, diabetes, autism and atherosclerosis development. The mechanisms of action of the antioxidants on pathological processes and modern approaches in food products development, which are fortified by microelements and ways of oxidative stress overcoming have been described.

Keywords: oxidative stress, antioxidants, mechanism of action, hypoelementosis, microelements, pathogenesis.

Language of article: ukrainian.

References:

  1. Baraboy V.A., Reznikov O.H. Physiology, biochemistry and psychology of stress (Kyiv: Interservis, 2013).
  2. Durackova Z. Some current insights into oxidative stress. Physiol. Res. 2010. 59: 459–469.
  3. Fisher-Wellman K., Bell H.K., Bloomer R.J. Oxidative stress and antioxidant defense mechanisms linked to exercise during cardiopulmonary and metabolic disorders. Oxid. Med. Cell. Longev. 2009. 2: 43–51. http://dx.doi.org/10.4161/oxim.2.1.7732
  4. Laranjinha J. Oxidative stress: from 1980’s to recent update. In: Oxidative Stress. Inflammation and Angiogenesis in the Metabolic Syndrome (N.Y., 2009). P. 21–32. http://dx.doi.org/10.1007/978-1-4020-9701-0_2
  5. Min D.B., Doff I.M. Chemistry and Reaction of Singlet Oxygen in Foods. Comp. Rev. Food Sci. Food Saf. 2002. 1(2): 58–72. http://dx.doi.org/10.1111/j.1541-4337.2002.tb00007.x
  6. Valko M., Leibfritz D., Moncol J., Cronin M.T., Mazur M., Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell. Biol. 2007. 39(1): 44–84. http://dx.doi.org/10.1016/j.biocel.2006.07.001
  7. Lobo V., Phatak A., Chandra N. Free radicals and functional foods: impact on human health. Pharmacol. Rev. 2010. 4(2): 118–126. http://dx.doi.org/10.4103/0973-7847.70902
  8. Diet, nutrition and the prevention of chronic diseases. Report of a Joint WHO/FAO Expert Consultation (Geneva: WHO, 2003). http://www.whglibdoc.who.int/trs/WHOTRS916.pdf.
  9. Choe E., Min D.B. Mechanisms of antioxidants in the oxidation of foods. Comp. Rev. Food Sci. Food Saf. – 2009. 8(3): 345–358. http://dx.doi.org/10.1111/j.1541-4337.2009.00085.x
  10. Polumbryk M., Ivanov S., Polumbryk O. Antioxidants in food systems. Mechanism of action. Ukr. J. Food Sci. 2013. 1(1): 15–40. http://dspace.nuft.edu.ua/jspui/bitstream/123456789/11000/1/Polumbryk_M_O.pdf.
  11. Durackova Z. Oxidants, antioxidants and oxidative stress. In: Mitochondrial Medicine (ed. A. Gvordjakova) (Springer, 2008). Р. 19–54. http://dx.doi.org/10.1007/978-1-4020-6714-3_2
  12. Carocho M., Ferreira I.C.F.R. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol. 2013. 57: 15–25. http://dx.doi.org/10.1016/j.fct.2012.09.021
  13. Gao L.P., Wei H.L., Zhao H.S., Xiao S.Y., Zheng R.L. Antiapoptotic and antioxidant effects of rosmarinic acid in astrocytes. Pharmacia. 2005. 50: 62–65.
  14. Leopoldini M., Russo N., Toscano M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011. 125: 288–306. http://dx.doi.org/10.1016/j.foodchem.2010.08.012
  15. Maurya D.K., Devasagayam T.P. Antioxidant and prooxidant nature of hydroxyl cinnamic acid derivatives ferulic and caffeic acids. J. Appl. Toxicol. 2005. 25(4): 535–48.
  16. Pietta P.G. Flavonoids as antioxidants. J. Nat. Food. 2000. 63: 1035–42. http://dx.doi.org/10.1021/np9904509
  17. Prochazkova D., Bousova I., Wilhelmova N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia. 2011. 82: 513–23. http://dx.doi.org/10.1016/j.fitote.2011.01.018
  18. Maksyutyna N.P., Moybenko A.A., Mokhart N.A. Bioflavonoids like organoprotektors (Kyiv: Naukova Dumka, 2012).
  19. Ametov A.S., Solov'yeva O.L. Problemy endokrinologii. 2011. 57(6): 52–56. http://dx.doi.org/10.14341/probl201157652-56
  20. Young A.J., Lowe G.M. Antioxidant and prooxidant properties of carotenoids. Arch. Biochem. Biophys. 2001. 382: 20–27. http://dx.doi.org/10.1006/abbi.2000.2149
  21. Krinsky N.I., Yeum K.J. Carotenoid–radical interactions. Biochem. Biophys. Res. Commun. 2003. 305: 754–60. http://dx.doi.org/10.1016/S0006-291X(03)00816-7
  22. Palozza P. Prooxidant actions of carotenoids in biologic systems. Nutr. Rev. 1998. 56: 257–65. http://dx.doi.org/10.1111/j.1753-4887.1998.tb01762.x
  23. Moini H., Pacher L., Saris N.E. Antioxidant and prooxidant activities of alpha-lipoic acid and dihydrolipoic acid. Toxicol. Appl. Pharmacol. 2002. 182: 84–90. http://dx.doi.org/10.1006/taap.2002.9437
  24. Murakami M., Yamaguchi T., Takamura H. Effects of ascorbic acid and L-tocopherol on antioxidant activity of polyphenolic compounds. J. Food Sci. 2003. 68: 1622–25. http://dx.doi.org/10.1111/j.1365-2621.2003.tb12302.x
  25. Lu J.M., Lin P.H., Yao Q., Chen C. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J. Cell. Mol. Med. 2010. 14: 840–60. http://dx.doi.org/10.1111/j.1582-4934.2009.00897.x
  26. Hirsch E.C., Faucheux B.A. Iron metabolism and Parkinson’s disease. Movem. Disord. 1998. 13: 39–45.
  27. Cuajungco M.P., Faget K.Y., Huang X., Tanzi R.E., Bush A.I. Metal chelation as a potential therapy for Alzheimer’s disease. Ann. N.Y. Acad. Sci. 2000. 920: 292–304. http://dx.doi.org/10.1111/j.1749-6632.2000.tb06938.x
  28. Pacher P., Beckman J.S., Liaudet L. Nitric oxide and peroxynitrile in health and disease. Physiol. Rev. 2007. 87: 315–424. http://dx.doi.org/10.1152/physrev.00029.2006
  29. Viappiani S., Schulz R. Detection of specific nitrotyrosine – modified proteins as a marker of oxidative stress in cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 2006. 290: 2167–68. http://dx.doi.org/10.1152/ajpheart.00128.2006
  30. Polumbryk M.O. Carbohydrates in food and health (Kyiv: Akademperiodyka, 2011). [in Ukrainian].
  31. Villanueva C., Kross R.D. Antioxidant-induced stress. Int. J. Mol. Sci. 2012. 13: 2091–109. http://dx.doi.org/10.3390/ijms13022091
  32. Duarte T.L., Lunec J. Review: When is an antioxidant not an antioxidant? A review of novel actions and reaction of vitamin C. Free Radic. Res. 2005. 39: 671–80. http://dx.doi.org/10.1080/10715760500104025
  33. Rababah T.M., Hettiarachchy N.S., Horax R. Total phenolics and antioxidant activities of fenugreek, green tea, black tea, grape seed, ginger, rosemary, gotu cola and ginkgo extracts, vitamin E and tret-butylhydroquinone. J. Agric. Food Chem. 2004. 52: 5183–86. http://dx.doi.org/10.1021/jf049645z
  34. Mashkovskiy M.D. Therapeutic Pharmaceutical Agents (Moscow: Novaya Volna, 2005).
  35. Bibik Ye.YU., Fomina K.A., Yushchak M.V. Ukrayinskiy medychniy almanakh. 2009. 12(1): 213–17.
  36. Burlakova Ye.B. Rossiyskiy khimicheskiy zhurnal (Russian Chemical Journal). 2007. 51(1): 3–12.
  37. Fragg C.G. Relevance, essentiality and toxicity of trace elements in human health. Mol. Asp. Med. 2005. 26: 235–44. http://dx.doi.org/10.1016/j.mam.2005.07.013
  38. Eide D.J. The oxidative stress of Zinc deficiency. Metallomics. 2011. 3: 1124–29. http://dx.doi.org/10.1039/c1mt00064k
  39. Tronko M.D., Polumbryk M.O., Kovbasa V.M., Kravchenko V.I., Balion Y.H. The Biological Role of Zinc on Human Body and Necessity of Sufficient Level of its Intake. Visn. Nac. Akad. Nauk Ukr. 2013. (6): 21–31. http://www.visnyk-nanu.org.ua/en/node/1042.
  40. Serdyuk A.M., Hulich M.P., Kaplunenko V.H., Kosinov M.V. Zhurnal Natsionalnoi akademii medychnykh nauk Ukrainy. 2010. 16(1): 107–14.