Ультразвукові методи модифікування поверхні та діагностики новітніх металевих матеріалів

За матеріалами доповіді на засіданні Президії НАН України 23 лютого 2022 року

Автор(и)

  • Богдан Миколайович Мордюк доктор фізико-математичних наук, завідувач відділу фізичних основ інженерії поверхні Інституту металофізики ім. Г.В. Курдюмова HАН України https://orcid.org/0000-0001-6025-3884

DOI:

https://doi.org/10.15407/visn2022.04.042

Ключові слова:

фізика металів, інженерія поверхні, високочастотна ударна обробка, деформаційні наноструктури та композити, перерозподіл напружень, зварні з’єднання, біоматеріали, адитивні технології 3D-друку, ультразвукові прецизійні вимірювання, неруйнівний контроль

Анотація

У доповіді наведено аналіз ефективності методу високочастотного ударного проковування ультразвуковим інструментом (УЗУО, або ВМП). Розглянуто механізми формування нанорозмірних зеренних структур і композитів, перерозподілу напружень, можливості усунення дефектів і поруватості в поверхневих шарах металевих матеріалів, отриманих за допомогою традиційних і новітніх адитивних технологій 3D-друку і призначених для виробництва зварних конструкцій і споруд, а також методології ультразвукових прецизійних вимірювань і неруйнівного контролю. Окреслено перспективи впровадження цих методів у транспортному машинобудуванні та медицині для забезпечення підвищеного ресурсу, опору втомі, корозії та зношуванню.

Посилання

Sulima A.M., Evstigneev M.I. Kachestvo poverkhnostnogo sloya i ustalostnaya prochnost' detaley iz zharoprochnykh i titanovykh splavov (Quality of surface layer and fatigue strength of details made of heat-resistant and titanium alloys). Moscow: Mashinostroenie, 1974. (in Russian).

Severdenko V.G., Klubovich V.V., Stepanenko A.V. Obrabotka metallov davleniyem s ultrazvukom (Ultrasonic pres-sure treatment of metals). Minsk: Nauka i Tekhnika, 1973. (in Russian).

Mukhanov I.I. Impulsnaya uprochnyayushche-chistovaya obrabotka detaley mashin ultrazvukovym instrumentom (Pulse hardening and finishing of machine parts with ultrasonic tools). Moscow: Mashinostroenie, 1978. (in Russian).

Belotsky A.V. et al. Ultrazvukovoye uprochneniye metallov (Ultrasonic hardening of metals). Kyiv: Tekhnika, 1989. (in Russian).

Sealy M.P. et al. Hybrid Processes in Additive Manufacturing. J. Manuf. Sci. Eng. 2018. 140 (6): 060801. https://doi.org/10.1115/1.4038644

Pragana J.P.M. et al. Hybrid metal additive manufacturing: A state-of-the-art review. Adv. Industr. Manuf. Eng. 2021. 2: 100032. https://doi.org/10.1016/j.aime.2021.100032

Prokopenko G.I., Mordyuk B.M., Vasyliev M.O., Voloshko S.M. Fizychni Osnovy Ul’trazvukovogo Udarnogo Zmitsnennya Metalevykh Poverkhon’ (Physical Principles for Ultrasonic Impact Hardening of Metallic Surfaces). Kyiv: Naukova Dumka, 2017 (in Ukrainian).

Prokopenko G.I. (ed.). Ul’trazvukova Udarna Obrobka Konstruktsiy i Sporud Tansportnogo Mashynobuduvannya (Ul-trasonic impact treatment of constructions and structures of transport machine building). Sumy: Universitetska Knyga, 2020 (in Ukrainian).

Marquis G., Barsoum Z. Fatigue strengthening of steel structures by high-frequency mechanical impact: proposed procedures and quality assurance guidelines. Welding in the World. 2013. 57: 803. https://doi.org/10.1007/s40194-013-0075-x

Kotko V.A., Prokopenko G.I., Firstov S.A. Structural changes in ultrasonic molybdenum. Fisika Metalov Metaloved. 1974. 37 (2): 444.

Gust W. et al. Ultrasonic shock treatment of welded joints. Mater. Sci. 1999. 35 (5): 678. https://doi.org/10.1007/BF02359355

Lobanov L.M., Kirian V.I., Knysh V.V., Prokopenko G.I. Improvement of fatigue resistance of welded joints in metal structures by high-frequency mechanical peening. Automatic Welding. 2006. (9): 2. (in Russian).

Mordyuk B.N., Prokopenko G.I. Ultrasonic impact peening for the surface properties’ management. J. Sound Vibra-tion 2007. 308 (3-5): 855. https://doi.org/10.1016/j.jsv.2007.03.054

Mordyuk B.N., Prokopenko G.I. Ultrasonic impact treatment — an effective method for nanostructuring the surface layers in metallic materials. In: Aliofhazraei M. (ed.) Handbook of Mechanical Nanostructuring. 2015. 2: 417. https://doi.org/10.1002/9783527674947.ch17

Yıldırım H.C., Marquis G. Overview of Fatigue Data for High Frequency Mechanical Impact Treated Welded Joints. Welding in the World. 2012. 56: 82. https://doi.org/10.1007/BF03321368

Malaki M., Ding H. A review of ultrasonic peening treatment. Mater. Design. 2015. 87: 1072. https://doi.org/10.1016/j.matdes.2015.08.102

Polotsky I.G., Nedoseka A.Y., Prokopenko G.I. et al. Reduction of residual welding stresses by ultrasonic treatment. Automatic Welding. 1974. (5): 74.

Kulemin A.V., Kononov V.V., Stebelkov I.A. Enhancement in fatigue strength of details by ultrasonic surface treat-ment. Strength Mater. 1981. (1): 70.

Amanov A. et al. Microstructural evolution and surface properties of nanostructured Cu-based alloy by ultrasonic nanocrystalline surface modification technique. Appl. Surf. Sci. 2016. 388 (A): 185. https://doi.org/10.1016/j.apsusc.2016.01.237

John M. et al. Ultrasonic Surface Rolling Process: Properties, Characterization, and Applications. Appl. Sci. 2021. 11(22): 10986. https://doi.org/10.3390/app112210986

Lu K., Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater. Sci. Eng. A. 2004. 375–377: 38. https://doi.org/10.1016/j.msea.2003.10.261

Patent US. No. 6467321B2. Prokopenko G.I. et al. Device for ultrasonic peening of metals. Publ. 07.02.2002.

Patent EU. No. EP1447455A1. Lobanov L. et al. Method for processing welded metal work joints by high-frequency hummering. Publ. 18.08.2004.

Mordyuk B.N., Prokopenko G.I. Fatigue life improvement of α-titanium by novel ultrasonically assisted technique. Mater. Sci. Eng. A. 2006. 437: 396. https://doi.org/10.1016/j.msea.2006.07.119

Vasylyev M.O. et al. Microstructure Evolution of the Carbon Steels during Surface Severe Plastic Deformation. Pro-gress Metal. Phys. 2021. 22 (4): 562. https://doi.org/10.15407/ufm.22.04.562

Markovs’kyi P.E. et al. Improvement of the fatigue characteristics of VT1-0 titanium alloy by the surface mechanical and rapid thermal treatment. Mater. Sci. 2006. 42 (3): 376. https://doi.org/10.1007/s11003-006-0092-7

Dekhtyar A.I. et al. Enhanced fatigue behavior of powder metallurgy Ti-6Al-4V alloy by applying ultrasonic impact treatment. Mater. Sci. Eng. A. 2015. 641: 348. https://doi.org/10.1016/j.msea.2015.06.072

Mordyuk B.N. et al. Improved fatigue behavior of low-carbon steel 20GL by applying ultrasonic impact treatment combined with the electric discharge surface alloying. Mater. Sci. Eng. A. 2016. 659: 119. https://doi.org/10.1016/j.msea.2016.02.036

Mordyuk B.N., Prokopenko G.I., Milman Yu.V. et al. Enhanced fatigue durability of Al-6Mg alloy by applying ultra-sonic impact peening: Effects of surface hardening and reinforcement with AlCuFe quasicrystalline particles. Mater. Sci. Eng. A. 2013. 563: 138. https://doi.org/10.1016/j.msea.2012.11.061

Mordyuk B.N. et al. Effects of ultrasonic impact treatment combined with the electric discharge surface alloying by molybdenum on the surface related properties of low-carbon steel G21Mn5. Surf. Coat. Technol. 2016. 309: 969. https://doi.org/10.1016/j.surfcoat.2016.10.050

Mordyuk B.N., Prokopenko G.I., Vasylyev M.A. et al. Effect of structure evolution induced by ultrasonic peening on the corrosion behavior of AISI-321 stainless steel. Mater. Sci. Eng. A. 2007. 458: 253. https://doi.org/10.1016/j.msea.2006.12.049

Petrov Yu.N., Prokopenko G.I. et al. Influence of microstructural modifications induced by ultrasonic impact treat-ment on hardening and corrosion behavior of wrought Co-Cr-Mo biomedical alloy. Mater. Sci. Eng. С. 2016. 58: 1024. https://doi.org/10.1016/j.msec.2015.09.004

Khripta N.I. et al. Surface Layers of Zr-18% Nb Alloy Modified by Ultrasonic Impact Treatment: Microstructure, Hardness and Corrosion. J. Mater. Eng. Perform. 2017. 26 (11): 5446.

Vasylyev M.A. et al. Corrosion of 2024 alloy after ultrasonic impact cladding with iron. Surf. Eng. 2018. 34: 324. https://doi.org/10.1080/02670844.2017.1334377

Lesyk D.A. et al. Influence of combined laser heat treatment and ultrasonic impact treatment on microstructure and corrosion behavior of AISI 1045 steel. Surf. Coat. Technol. 2020. 401: 126275. https://doi.org/10.1016/j.surfcoat.2020.126275

Mordyuk B.N. et al. Ti particle-reinforced surface layers in Al: Effect of particle size on microstructure, hardness and wear. Mater. Characterization. 2010. 61 (11): 1126. https://doi.org/10.1016/j.matchar.2010.07.007

Mordyuk B.N. et al. Structure and wear of Al surface layers reinforced with AlCuFe particles using ultrasonic im-pact peening: Effect of different particle sizes. Surf. Coat. Technol. 2011. 205: 5278. https://doi.org/10.1016/j.surfcoat.2011.05.046

Mordyuk B.N. et al. Wear assessment of composite surface layers in Al–6Mg alloy reinforced with AlCuFe quasicrys-talline particles: Effects of particle size, microstructure and hardness. Wear. 2014. 319: 84. https://doi.org/10.1016/j.wear.2014.07.011

Lesyk D.A. et al. Microstructure related enhancement in wear resistance of tool steel AISI D2 by applying laser heat treatment followed by ultrasonic impact treatment. Surf. Coat. Technol. 2017. 328: 344. https://doi.org/10.1016/j.surfcoat.2017.08.045

Lesyk D.A. et al. Combining laser transformation hardening and ultrasonic impact strain hardening for enhanced wear resistance of AISI 1045 steel. Wear. 2020. 462: 203494. https://doi.org/10.1016/j.wear.2020.203494

Milman Yu.V. et al. New Opportunities to Determine the Rate of Wear of Materials at Friction by the Indentation Data. Progress Phys. Met. 2020. 21: 554. https://doi.org/10.15407/ufm.21.04.554

Mordyuk B.N., Prokopenko G.I. et al. Characterization of ultrasonically peened and laser-shock peened surface lay-ers of AISI 321 stainless steel. Surf. Coat. Technol. 2008. 202: 4875. https://doi.org/10.1016/j.surfcoat.2008.04.080

Lesyk D.A. et al. Mechanical Surface Treatments of AISI 304 Stainless Steel: Effects on Surface Microrelief, Residual Stress, and Microstructure. J. Mater. Eng. Perform. 2019. 28: 5307. https://doi.org/10.1007/s11665-019-04273-y

Vasylyev M.A. et al. Influence of microstructural features and deformation-induced martensite on hardening of stainless steel by cryogenic ultrasonic impact treatment. Surf. Coat. Technol. 2018. 343: 57. https://doi.org/10.1016/j.surfcoat.2017.11.019

Patent of Ukraine. No. 109975. Prokopenko G.I., Krasovsky T.A., Cherepin V.T., Mordyuk B.N. Ultrasonic hand tool for deformation hardening and relaxation treatment of metals. Publ. 26.10.2015. (in Ukrainian).

Prokopenko G.I., Mordyuk B.N., Krasovsky T.A., Knysh V.V., Solovey S.O. Creation of industrial equipment for high-frequency mechanical impact on railway car building products and methods for assessing the quality of treatment. Science and Innovations. 2019. 15(2): 25. https://doi.org/10.15407/scin15.02.027

Knysh V. et al. Influence of hardening by high-frequency mechanical impacts of butt-welded joints made of 15KhSND steel on their atmospheric corrosion and fatigue fracture resistance. Mater. Sci. 2018. 54(3): 421. https://doi.org/10.1007/s11003-018-0201-4

Knysh V. et al. Influence of the accelerated corrosion exposure on the fatigue behaviour of welded joints treated by high frequency mechanical impact. Int. J. Fatigue. 2021. 149: 106272. https://doi.org/10.1016/j.ijfatigue.2021.106272

Knysh V.V., Solovei S.O., Nyrkova L.I., Osadchuk S.O. Influence of marine media on the fatigue strength of butt-welded joints of 15KhSND steel hardened by high-frequency mechanical impacts. Mater. Sci. 2020. 55(6): 812. https://doi.org/10.1007/s11003-020-00374-5

Knysh V.V., Solovei S.O.et al. Influence of high-frequency peening on the corrosion fatigue of welded joints. Mater. Sci. 2017. 53: 7. https://doi.org/10.1007/s11003-017-0036-4

Knysh V.V. et al. Increasing Corrosion Fatigue of Welded Joints of Steel 15KhSND with Construction Defects by Electric Discharge Surface Alloying and High Frequency Mechanical Impact. Metallofiz. Noveishie Tekhnol. 2019. 41(12): 1631. https://doi.org/10.15407/mfint.41.12.1631

Knysh V. et al. Influence of the atmosphere corrosion on the fatigue life of welded T-joints treated by high fre-quency mechanical impact. Proc. Struct. Integrity. 2019. 16: 73. https://doi.org/10.1016/j.prostr.2019.07.024

Knysh V.V., Solovej S.A., Lynnyk G.O. et al. Application of welded studs for fastening the floor of railway bridges. Automatic Welding. 2015. (1): 40. https://patonpublishinghouse.com/as/pdf/2015/pdfarticles/01/7.pdf

Knysh V.V., Klochkov I.N., Pashulya M.P., Motrunich S.I. Increase of fatigue resistance of sheet welded joints of aluminum alloys using high-frequency peening. Paton Welding Journal. 2014. (5): 21. https://doi.org/10.15407/tpwj2014.05.04

Degtyarev V.A. Assessment of the high-frequency mechanical forging mode effect on fatigue strength of welded joints. Strength Mater. 2011. 43: 154. https://doi.org/10.1007/s11223-011-9281-1

Statnikov E.S. et al. Physics and mechanism of ultrasonic impact. Ultrasonics. 2006. 44: e533. https://doi.org/10.1016/j.ultras.2006. 05.119

Gao W. et al. Enhancement of the fatigue strength of underwater wet welds by grinding and ultrasonic impact treatment. Mater. Proc. Tech. 2015. 223: 305. https://doi.org/10.1016/j.jmatprotec.2015.04.013

Abdulah A., Malaki M., Eskandari A. Strength enhancement of the welded structures by ultrasonic peening. Mater. & Design. 2012. 38: 7. https://doi.org/10.1016/j.matdes.2012.01.040

Daavary M., Sadough Vanini S.A. The effect of ultrasonic peening on service life of the butt-welded high-temperature steel pipes. J. Mater. Eng. Perform. 2015. 24: 3658. https://doi.org/10.1007/s11665-015-1644-5

Volosevich P.Yu., Prokopenko G.I., Mordyuk B.M. Evolution of a dislocation structure under shock impulse loading with different frequencies. Metallofiz. Noveishie Tekhnol. 2000. 22: 61.

Lesyk D.A. et al. Effects of laser heat treatment combined with ultrasonic impact treatment on the surface topogra-phy and hardness of carbon steel AISI 1045. Optics & Laser Technol. 2019. 111: 424. https://doi.org/10.1016/j.optlastec.2018.09.030

Lesyk D.A. et al. Combined Laser-Ultrasonic Surface Hardening Process for Improving the Properties of Metallic Products. In: Ivanov V. et al. (eds) Advances in Design, Simulation and Manufacturing. DSMIE 2018. Lecture Notes in Mechanical Engineering. Springer, Cham, 2019. https://doi.org/10.1007/978-3-319-93587-4_11

Lesyk D.A. et al. Surface microrelief and hardness of laser hardened and ultrasonically peened AISI D2 tool steel. Surf. Coat. Technol. 2015. 278: 108. https://doi.org/10.1016/j.surfcoat.2015.07.049

Mordyuk B.N. et al. Structure, microhardness and damping characteristics of Al matrix composite reinforced with AlCuFe or Ti using ultrasonic impact peening. Surf. Coat. Technol. 2010. 204: 1590. https://doi.org/10.1016/j.surfcoat.2009.10.009

Vasylyev M.A. et al. Synthesis of Deformation-Induced Nanocomposites on Aluminium D16 Alloy Surface by Ultra-sonic Impact Treatment. Metallofiz. Noveishie Tekhnol. 2016. 38(4): 545. https://doi.org/10.15407/mfint.38.04.0545

Burmak A.P. et al. Synthesis of Composite Layers on Cu–39Zn–1Pb Brass Using Ultrasonic Impact Treatment. Metallofiz. Noveishie Tekhnol. 2020. 42(9): 1245. https://doi.org/10.15407/mfint.42.09.1245

Vasylyev M.A. et al. Ultrasonically Nanostructured Electric-Spark Deposited Ti Surface Layer on Ti6Al4V Alloy: En-hanced Hardness and Corrosion Resistance. Int. J. Surf. Sci. Eng. 2020. 14(1): 1—15. https://doi.org/10.1504/IJSURFSE.2020.10027541

Mordyuk B.N., Voloshko S.M., Zakiev V.I. et al. Enhanced Resistance of Ti6Al4V Alloy to High-Temperature Oxida-tion and Corrosion by Forming Alumina Composite Coating. J. Mater. Eng. Perform. 2021. 30: 1780. https://doi.org/10.1007/s11665-021-05492-y

Burmak A.P. et al. Formation of Composite Layers by Ultrasonic Impact Treatment of Cu-39Zn-1Pb Brass Using Silicon Carbide Reinforcing Particles. Metallofiz. Noveishie Tekhnol. 2022. 44 (1): 97. https://doi.org/10.15407/mfint.44.01.0097

Chenakin S.P. et al. Ultrasonic impact treatment of CoCrMo alloy: Surface composition and properties. App. Surf. Sci. 2017. 408: 11. https://doi.org/10.1016/j.apsusc.2017.03.004

Vasylyev M.A. et al. Ultrasonic impact treatment induced oxidation of Ti6Al4V alloy. Acta Mater. 2016. 103: 761. https://doi.org/10.1016/j.actamat.2015.10.041

Chenakin S.P. et al. Surface characterization of a ZrTiNb alloy: Effect of ultrasonic impact treatment. Appl. Surf. Sci. 2018. 470: 44. https://doi.org/10.1016/j.apsusc.2018.11.116

Mordyuk B.N., Prokopenko G.I. Mechanical alloying of powder materials by ultrasonic milling. Ultrasonics. 2004. 42: 43. https://doi.org/10.1016/j.ultras.2004.01.001

Mordyuk B.N. et al. Ultrafine-grained textured surface layer on Zr–1% Nb alloy produced by ultrasonic impact peening for enhanced corrosion resistance. Surf. Coat. Technol. 2012. 210: 54. https://doi.org/10.1016/j.surfcoat.2012.08.063

Mordyuk B.N. et al. Structurally induced enhancement in corrosion resistance of Zr–2.5% Nb alloy in saline solution by applying ultrasonic impact peening. Mater. Sci. Eng. A. 2013. 559: 453. https://doi.org/10.1016/j.msea.2012.08.125

Mordyuk B.M. et al. Structural Dependence of Corrosion Properties of Zr–1.0% Nb Alloy in Saline Solution. Metallofiz. Noveish. Tekhnol. 2014. 36(7): 917. https://doi.org/10.15407/mfint.36.07.0917

Firstov G.S. Functional metallic shape memory materials: state of the art and application prospects. Visn. Nac. Akad. Nauk Ukr. 2019. (4): 19. https://doi.org/10.15407/visn2018.06.019

Khripta N.I. The problem of biomedical compatibility of metallic materials and ways of solving it. Visn. Nac. Akad. Nauk Ukr. 2019. (4): 42. https://doi.org/10.15407/visn2019.04.042

Lesyk D.A. et al. Post-processing of the Inconel 718 alloy parts fabricated by selective laser melting: Effects of me-chanical surface treatments on surface topography, porosity, hardness and residual stress. Surf. Coat. Technol. 2020. 381: 125136. https://doi.org/10.1016/j.surfcoat.2019.125136

Lesyk D.A., Dzhemelinskyi V.V., Martinez S. et al. Surface Shot Peening Post-processing of Inconel 718 Alloy Parts Printed by Laser Powder Bed Fusion Additive Manufacturing. J. Mater. Eng. Perform. 2021. 30: 6982. https://doi.org/10.1007/s11665-021-06103-6

Lesyk D.A., Martinez S., Pedash O.O. et al. Nickel Superalloy Turbine Blade Parts Printed by Laser Powder Bed Fu-sion: Thermo-Mechanical Post-processing for Enhanced Surface Integrity and Precipitation Strengthening. J. Mater. Eng. Perform. 2022. https://doi.org/10.1007/s11665-022-06710-x

Mordyuk B.N., Dekhtyar A.I., Savvakin D.G. et al. Tailoring Porosity and Microstructure of Alpha-Titanium by Com-bining Powder Metallurgy and Ultrasonic Impact Treatment to Control Elastic and Fatigue Properties. J. Mater. Eng. Perform. 2022. https://doi.org/10.1007/s11665-022-06633-7

Zaporozhets О.I. et al. Ultrasonic studies of texture inhomogeneities in pressure vessel steel subjected to ultrasonic impact treatment and shock compression. Surf. Coat. Technol. 2016. 307: 693. https://doi.org/10.1016/j.surfcoat.2016.09.053

Zaporozhets О.I. et al. Influence of surface ultrasonic impact treatment on texture evolution and elastic properties in the volume of Zr1Nb alloy. Surf. Coat. Technol. 2020. 403: 126397. https://doi.org/10.1016/j.surfcoat.2020.126397

Zaporozhets O.I., Dordienko M.O., Mykhailovskyy V.A. Acoustic and Elastic Properties of Components of a Wall of the VVER-440 Vessel. Metallofiz. Noveishie Tekhnol. 2016. 38(6): 795. https://doi.org/10.15407/mfint.38.06.0795

Mykhailovskyy V.A., Dordienko M.O., Zaporozhets O.I. Choice of Model of Reconstruction of a Temperature Profile for the Ultrasonic Non-destructive Testing of the Closed Construction of Unilateral Access in Non-Stationary Ther-mal Conditions. Metallofiz. Noveishie Tekhnol. 2015. 37(8): 1027. https://doi.org/10.15407/mfint.37.08.1027

##submission.downloads##

Опубліковано

2022-04-27

Як цитувати

Мордюк, Б. М. (2022). Ультразвукові методи модифікування поверхні та діагностики новітніх металевих матеріалів: За матеріалами доповіді на засіданні Президії НАН України 23 лютого 2022 року. Вісник Національної академії наук України, (4), 42–53. https://doi.org/10.15407/visn2022.04.042

Номер

Розділ

З КАФЕДРИ ПРЕЗИДІЇ НАН УКРАЇНИ