Роль мікробіома в розвитку онкологічної патології

Автор(и)

  • Володимир Павлович Широбоков доктор медичних наук, професор, академік НАН України, академік НАМН України, завідувач кафедри мікробіології, вірусології і імунології Національного медичного університету ім. О.О. Богомольця https://orcid.org/0000-0002-7474-5895
  • Дмитро Станіславович Янковський доктор біологічних наук, професор, генеральний директор Науково-виробничої компанії «О.Д. Пролісок» https://orcid.org/0000-0003-2780-5194
  • Галина Семенівна Димент кандидат технічних наук, директор наукового центру Науково-виробничої компанії «О.Д. Пролісок» https://orcid.org/0000-0002-6187-0152

Ключові слова:

мікробіом, дисбіоз, імунітет, канцерогенез, онкологічні захворювання, колоректальний рак, мікробіота, метаболіти, канцерогени, токсини, запалення, імунотерапія, пробіотики

Анотація

Огляд присвячено аналізу сучасних уявлень про природну мікробіоту людини (мікробіом) як ключову детермінанту, відповідальну як за підтримання здоров'я, так і за розвиток широкого спектру захворювань, зокрема раку. Останніми роками отримано багато переконливих доказів величезного потенціалу дії мікробіома на різні процеси функціонування організму людини. Ґрунтуючись на цих даних, фахівці розглядають мікробіом як додатковий орган людини, який, беручи активну участь у травленні, керуванні метаболічними процесами, забезпеченні цілісності епітеліального бар’єра, зміцненні імунної системи та виконуючи низку інших фізіологічних функцій, оптимізує умови для нормальної життєдіяльності організму людини загалом.

Посилання

Whisner C.M., Aktipis C.A. The Role of the Microbiome in Cancer Initiation and Progression: How Microbes and Cancer Cells Utilize Excess Energy and Promote One Another’s Growth. Curr. Nutr. Rep. 2019. 8(1): 42—51. DOI: https://doi.org/10.1007/s13668-019-0257-2

Siegel R.L., Miller K.D., Jemal A. Cancer Statistics. CA Cancer J. Clin. 2019. 69(1): 7—34. DOI: https://doi.org/10.3322/caac.21551

Sánchez-Alcoholado L., Ramos-Molina B., Otero A., Laborda-Illanes A., Ordóñez R., Medina J.A., Gómez-Millán J., Queipo-Ortuño M.I. The Role of the Gut Microbiome in Colorectal Cancer Development and Therapy Response. Cancers (Basel). 2020. 12(6): 1406. DOI: https://doi.org/10.3390/cancers12061406

Garrett W.S. The gut microbiota and colon cancer. Science. 2019. 364(6446): 1133—1135. DOI: https://doi.org/10.1126/science.aaw2367

Ohigashi S., Sudo K., Kobayashi D., Takahashi O., Takahashi T., Asahara T., Nomoto K., Onodera H. Changes of the intestinal microbiota, short chain fatty acids and fecal pH in patients with colorectal cancer. Digest. Dis. Sci. 2013. 58(6): 1717—1726. DOI: https://doi.org/10.1007/s10620-012-2526-4

Villéger R., Lopès A., Carrier G., Veziant J., Billard E., Barnich N., Gagnière J., Vazeille E., Bonnet M. Intestinal Microbiota: A Novel Target to Improve Anti-Tumor Treatment? Int. J. Mol. Sci. 2019. 20(18): 4584. DOI: https://doi.org/10.3390/ijms20184584

Gopalakrishnan V., Helmink B.A., Spencer C.N., Reuben A., Jennifer A., Wargo J.A. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell. 2018. 33(4): 570—580. DOI: https://doi.org/10.1016/j.ccell.2018.03.015

Spitzer M.H., Carmi Y., Reticker-Flynn N.E., Kwek S.S., Madhireddy D., Martins M.M., Gherardini P.F., Prestwood T.R., Chabon J., Bendall S.C., Fong L., Nolan G.P., Engleman E.G. Systemic Immunity Is Required for Effective Cancer Immunotherapy. Cell. 2017. 168(3): 487—502. DOI: https://doi.org/10.1016/j.cell.2016.12.022

Cammarota G., Ianiro G., Cianci R., Bibbò S., Gasbarrini A., Currò D. The involvement of gut microbiota in inflammatory bowel disease pathogenesis: potential for therapy. Pharmacol. Ther. 2015. 149: 191—212. DOI: https://doi.org/10.1016/j.pharmthera.2014.12.006

Lederberg J., McCray A.T. 'Ome sweet 'omics — A genealogical treasury of words. Scientist. 2001. 15(7): 8.

Hutchinson L. Gut microbiota feeds obesity-induced liver cancer. Nat. Rev. Clin. Oncol. 2013. 10(8): 428. DOI: https://doi.org/10.1038/nrclinonc.2013.121

Yoshimoto S., Loo T.M., Atarashi K., Kanda H., Sato S., Oyadomari S., Iwakura Y., Oshima K. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013. 499: 97—101. DOI: https://doi.org/10.1038/nature12347

Candela M., Turroni S., Biagi E., Carbonero F., Rampelli S., Fiorentini C., Brigidi P. Inflammation and colorectal cancer, when microbiota-host mutualism breaks. World J. Gastroenterol. 2014. 20: 908—922. DOI: https://doi.org/10.3748/wjg.v20.i4.908

Dejea C.M., Wick E.C., Hechenbleikner E.M., White J.R., Mark Welch J.L., Rossetti B.J., Peterson S.N., Snesrud E.C., Borisy G.G., Lazarev M., Stein E., Vadivelu J., Roslani A.C., Malik A.A., Wanyiri J.W., Goh K.L., Thevambiga I., Fu K., Wan F., Llosa N. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc. Natl. Acad. Sci. 2014. 111(51): 18321—18326. DOI: https://doi.org/10.1073/pnas.1406199111

Hooper L.V., Littman D.R., Macpherson A.J. Interactions between the microbiota and the immune system. Science. 2012. 336: 1268—1273. DOI: https://doi.org/10.1126/science.1223490

Li W., Deng Y., Chu Q., Zhang P. Gut microbiome and cancer immunotherapy. Cancer Lett. 2019. 447: 41—47. DOI: https://doi.org/10.1016/j.canlet.2019.01.015

Johansson M.E., Jakobsson H.E., Holmen-Larsson J., Schutte A., Ermund A., Rodriguez-Pineiro A.M., Arike L., Wising C., Svensson F., Bäckhed F., Hansson G.C. Normalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe. 2015. 18: 582—592. DOI: https://doi.org/10.1016/j.chom.2015.10.007

Aagaard K., Ma J., Antony K.M., Ganu R., Petrosino J., Versalovic J. The Placenta Harbors a Unique Microbiome. Sci. Transl. Med. 2014. 6: 237—265. DOI: https://doi.org/10.1126/scitranslmed.3008599

Yankovskyy D.S., Shyrobokov V.P., Dyment G.S. Microbiome. Kyiv: Veres O.I.., 2018).

Yankovskiy D.S., Dyment G.S. Microflora and human health. Кyiv: Chervona Ruta-Turs, 2008. (in Russian).

Yankovskyy D.S., Shyrobokov V.P., Dyment G.S. Integrated role of symbiotic microflora in human physiology. Kyiv: Chervona Ruta-Turs, 2011.( in Russian).

Yankovsky D.S., Shirobokov V.P., Dyment G.S. The role of microbiome in the formation of child health. Modern Pediatrics. Ukraine. 2019. 5(101): 64—111. DOI: https://doi.org/10.15574/SP.2019.101.64

Frosali S., Pagliari D., Gambassi G., Landolfi R., Pandolfi F., Cianci R. How the intricate interaction among toll-like receptors, microbiota, and intestinal immunity can influence gastrointestinal pathology. J. Immunol. Res. 2015: 489821. DOI: https://doi.org/10.1155/2015/489821

Levy M., Kolodziejczyk A.A., Thaiss C.A., Elinav E. Dysbiosis and the immune system. Nat. Rev. Immunol. 2017. 17(4): 219—232. DOI: https://doi.org/10.1038/nri.2017.7

Liu Z.Y., Zheng M., Li Y.M., Fan X.Y., Wang J.C., Li Z.C., Hai-Jiao Yang H.J., Yu J.M., Cui J., Jiang J.L., Tang J., Chen Z.N. RIP3 promotes colitis-associated colorectal cancer by controlling tumor cell proliferation and CXCL1-induced immune suppression. Theranostics. 2019. 9(12): 3659—3673. DOI: https://doi.org/10.7150/thno.32126

Sansonetti P.J., Di Santo J.P. Debugging how bacteria manipulate the immune response. Immunity. 2007. 26: 149—161. DOI: https://doi.org/10.1016/j.immuni.2007.02.004

Bose M., Mukherjee P. Role of Microbiome in Modulating Immune Responses in Cancer. Mediators of Inflammation. 2019. Article ID 4107917. DOI: https://doi.org/10.1155/2019/4107917

Fong, W., Li, Q., Yu, J. Gut microbiota modulation: a novel strategy for prevention and treatment of colorectal cancer. Oncogene. 2020. 39: 4925—4943. DOI: https://doi.org/10.1038/s41388-020-1341-1

Swidsinski A., Khilkin M., Kerjaschki D., Schreiber S., Ortner M., Weber J., Lochs H. Association between intraepithelial Escherichia coli and colorectal cancer. Gastroenterology. 1998. 115(2): 281—286. DOI: https://doi.org/10.1016/S0016-5085(98)70194-5

Gueimonde M., Ouwehand A., Huhtinen H., Salminen E., Salminen S. Qualitative and quantitative analyses of the bifidobacterial microbiota in the colonic mucosa of patients with colorectal cancer, diverticulitis and inflammatory bowel disease. World. J. Gastroenterol. 2007. 13(29): 3985—3989. DOI: https://doi.org/10.3748/wjg.v13.i29.3985

Shen X.J., Rawls J.F., Randall T., Burcal L., Mpande C.N., Jenkins N., Jovov B., Abdo Z., Sandler R.S., Keku T.O. Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes. 2010. 1(3): 138—147. DOI: https://doi.org/10.4161/gmic.1.3.12360

Wang T., Cai G., Qiu Y., Fei Na, Zhang M., Pang X., Jia W., Cai S., Zhao L. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012. 6: 320—329. DOI: https://doi.org/10.1038/ismej.2011.109

Song M., Chan A.T., Sun J. Influence of the Gut Microbiome, Diet, and Environment on Risk of Colorectal Cancer. Gastroenterology. 2020. 158(2): 322—340. DOI: https://doi.org/10.1053/j.gastro.2019.06.048

Cimadamore A., Santoni M., Massari F., Gasparrini S., Cheng L., Lopez-Beltran A., Montironi R., Scarpelli M. Microbiome and Cancers, With Focus on Genitourinary Tumors. Front. Oncol. 2019. 9: 178. DOI: https://doi.org/10.3389/fonc.2019.00178

Ahn J., Sinha R., Pei Z., Dominianni C., Wu J., Shi J., Goedert J.J., Hayes R.B., Yang L. Human gut microbiome and risk for colorectal cancer. J. Natl. Cancer Inst. 2013. 105(24): 1907—1911. DOI: https://doi.org/10.1093/jnci/djt300

Abreu M.T., Peek R.M. Gastrointestinal malignancy and the microbiome. Gastroenterology. 2014. 146(6): 1534—4156. DOI: https://doi.org/10.1053/j.gastro.2014.01.001

Zitvogel L., Daillère R., Roberti M.P., Routy B., Kroemer G. Anticancer effects of the microbiome and its products. Nat. Rev. Microbiol. 2017. 15: 465—478. DOI: https://doi.org/10.1038/nrmicro.2017.44

Toor D., Wasson M.K., Kumar P., Karthikeyan G., Kaushik N.K., Goel C., Singh S., Kumar A., Prakash H. Dysbiosis Disrupts Gut Immune Homeostasis and Promotes Gastric Diseases. Int. J. Mol. Sci. 2019. 20(10): 2432. DOI: https://doi.org/10.3390/ijms20102432

Songisepp E., Kals J., Kullisaar T., Mändar R., Hütt P., Zilmer M., Mikelsaar M. Evaluation of the functional efficacy of an antioxidative probiotic in healthy volunteers. Nutr. J. 2005. 4(4): 22. DOI: https://doi.org/10.1186/1475-2891-4-22

Cuevas-Ramos G., Petit C.R., Marcq I., Boury M., Oswald E., Nougayrède J.P. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc. Nat. Acad. Sci. USA. 2010. 107(25): 11537—11542. DOI: https://doi.org/10.1073/pnas.1001261107

Nelson R. Bacterial Biofilms May Play Role in Colorectal Cancer. Medscape Medical News. 2014. http://www.medscape.com/viewarticle/837145

Lu R., Wu S., Zhang Y-G., Xia Y., Liu X., Zheng Y., Chen H., Schaefer K.L., Zhou Z., Bissonnette M., Li L., Sun J. Enteric bacterial protein AvrA promotes colonic tumorigenesis and activates colonic beta-catenin signaling pathway. Oncogenesis. 2014. 3(6): e105. DOI: https://doi.org/10.1038/oncsis.2014.20

Wistuba I.I., Gazdar A.F. Gallbladder cancer: lessons from a rare tumour. Nat. Rev. Cancer. 2004. 4(9): 695—706. DOI: https://doi.org/10.1038/nrc1429

Gillet E., Meys J.F., Verstraelen H., Verhelst R., De Sutter P., Temmerman M., Vanden Broeck D. Association between bacterial vaginosis and cervical intraepithelium neoplasia: systematic review and meta-analysis. PLoS One. 2012. 7(10): e45201. DOI: https://doi.org/10.1371/journal.pone.0045201

Wang Y.C., Yu R.C., Chou C.C. Antioxidative activities of soymilk fermented with lactic acid bacteria and bifidobacteria. Food Microbiol. 2006. 23(2): 128—35. DOI: https://doi.org/10.1016/j.fm.2005.01.020

Scott A.J., Merrifield C.A., Younes J.A., Pekelharing E.P. Pre-, pro-, and synbiotics in cancer prevention and treatment — A review of basic and clinical research. Ecancermedicalscience. 2018. 12. DOI: https://doi.org/10.3332/ecancer.2018.869

Bashiardes S., Tuganbaev T., Federici S., Elinav E. The microbiome in anti-cancer therapy. Semin. Immunol. 2017. 32: 74—81. DOI: https://doi.org/10.1016/j.smim.2017.04.001

Iida N., Dzutsev A., Stewart C.A., Smith L., Bouladoux N., Weingarten R.A., Molina D.A., Salcedo R., Back T., Cramer S. Commensal Bacteria Control Cancer Response to Therapy by Modulating the Tumor Microenvironment. Science. 2013. 342: 967—970. DOI: https://doi.org/10.1126/science.1240527

Viaud S., Saccheri F., Mignot G., Yamazaki T., Daillere R., Hannani D., Enot D.P., Pfirschke C., Engblom C., Pittet M.J. The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide. Science. 2013. 342: 971—976. DOI: https://doi.org/10.1126/science.1240537

Gopalakrishnan V., Spencer C.N., Nezi L., Reuben A., Andrews M.C., Karpinets T.V., Prieto P.A., Vicente D., Hoffman K., Wei S.C. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science. 2018. 359: 97—103. DOI: https://doi.org/10.1126/science.aan4236

Collins D., Hogan A.M., Winter D.C. Microbial and viral pathogens in colorectal cancer. Lancet Oncol. 2011. 12: 504—512. DOI: https://doi.org/10.1016/S1470-2045(10)70186-8

Uronis J.M., Muhlbauer M., Herfarth H.H., Rubinas T.C., Jones G.S., Jobin C. Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS One. 2009. 4: e6026. DOI: https://doi.org/10.1371/journal.pone.0006026

Kado S., Uchida K., Funabashi H., Iwata S., Nagata Y., Ando M., Onoue M., Matsuoka Y., Ohwaki M., Morotomi M. Intestinal microflora are necessary for development of spontaneous adenocarcinoma of the large intestine in T-cell receptor beta chain and p53 double-knockout mice. Cancer Res. 2001. 61(6): 2395—2398. https://cancerres.aacrjournals.org/content/61/6/2395

Marchesi J.R., Dutilh B.E., Hall N., Peters W.H.M., Roelofs R., Boleij A., Tjalsma H. Towards the human colorectal cancer microbiome. PLoS One. 2011. 6: e20447. DOI: https://doi.org/10.1371/journal.pone.0020447

Coker O.O., Nakatsu G., Dai R.Z., Wu W.K.K., Wong S.H., Ng S.C., Chan F.K.L., Sung J.J.Y., Yu J. Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut. 2019. 68(4): 654—662. DOI: https://doi.org/10.1136/gutjnl-2018-317178

Moore W.E., Moore L.H. Intestinal floras of populations that have a high risk of colon cancer. Appl. Environ. Microbiol. 1995. 61(9): 3202—3207.

Vannucci L., Stepankova R., Kozakova H., Fiserova A., Rossmann P., Tlaskalova-Hogenova H. Colorectal carcinogenesis in germ-free and conventionally reared rats: different intestinal environments affect the systemic immunity. Int. J. Oncol. 2008. 32(3): 609–617. DOI: https://doi.org/10.3892/ijo.32.3.609

Wu S., Albesiano E., Rabizadeh S., Wu X., Yen H.R., Huso D.L., Brancati F.L., Wick E., McAllister F., Housseau F., Pardoll D.M., Sears C.L. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 2009. 15: 1016—1022. DOI: https://doi.org/10.1038/nm.2015

Toprak N.U., Yagci A., Gulluoglu B.M. Akin M.L., Demirkalem P., Celenk T., Soyletir G. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin. Microbiol. Infect. 2006. 12(8): 782—786. DOI: https://doi.org/10.1111/j.1469-0691.2006.01494.x

Balamurugan R., Rajendiran E., George S., Samuel G.V., Ramakrishna B.S. Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer. J. Gastroenterol. Hepatol. 2008. 23(8): 1298—1303. DOI: https://doi.org/10.1111/j.1440-1746.2008.05490.x

Yang J., McDowell A., Kim E.K., Seo H., Lee W.H., Moon C.M., Kym S.M., Lee D.H., Park Y.S., Jee Y.K., Kim Y.K. Development of a colorectal cancer diagnostic model and dietary risk assessment through gut microbiome analysis. Exp. Mol. Med. 2019. 51(10): 117. DOI: https://doi.org/10.1038/s12276-019-0313-4

Boleij A., Roelofs R., Schaeps R.M., Schülin T., Glaser P., Swinkels D.W., Kato I., Tjalsma H. Increased exposure to bacterial antigen RpL7/L12 in early stage colorectal cancer patients. Cancer. 2010. 116(17): 4014—4022. DOI: https://doi.org/10.1002/cncr.25212

Arthur J.C.., Gharaibeh R.Z., Mühlbauer M., Perez-Chanona E., Uronis J.M., McCafferty J., Fodor A.A., Jobin C. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat. Commun. 2014. 5: 4724. DOI: https://doi.org/10.1038/ncomms5724

Fichtner-Feigl S., Kesselring R., Strober W. Chronic inflammation and the development of malignancy in the GI tract. Trends Immunol. 2015. 36(8): 451—459. DOI: https://doi.org/10.1016/j.it.2015.06.007

Martel C., Ferlay J., Franceschi S., Vignat J., Bray F., Forman D., Plummer M. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012. 13: 607—615. DOI: https://doi.org/10.1016/S1470-2045(12)70137-7

Vivarelli S., Salemi R., Candido S., Falzone L., Santagati M., Stefani S., Torino F., Banna G., Tonini G., Libra M. Gut Microbiota and Cancer: From Pathogenesis to Therapy. Cancers (Basel). 2019. 11(1): 38. DOI: https://doi.org/10.3390/cancers11010038

Boleij A., Hechenbleikner E.M., Goodwin A.C., Badani R., Stein E.M., Lazarev M.G., Ellis B., Carroll K.C., Albesiano E., Wick E.C., Platz E.A., Pardoll D.M., Sears C.L. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin. Infect. Dis. 2015. 60(2): 208—215. DOI: https://doi.org/10.1093/cid/ciu787

Hatakeyama M. Structure and function of Helicobacter pylori CagA, the first-identified bacterial protein involved in human cancer. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci. 2017. 93: 196—219. DOI: https://doi.org/10.2183/pjab.93.013

Moss S.F. The Clinical Evidence Linking Helicobacter pylori to Gastric Cancer. Cell. Mol. Gastroenterol. Hepatol. 2017. 3: 183—191. DOI: https://doi.org/10.1016/j.jcmgh.2016.12.001

Kim J.J., Tao H., Carloni E., Leung W.K., Graham D.Y., Sepulveda A.R. Helicobacter pylori impairs DNA mismatch repair in gastric epithelial cells. Gastroenterology. 2002. 123: 542—553. DOI: https://doi.org/10.1053/gast.2002.34751

Toller I.M., Neelsen K.J., Steger M., Hartung M.L., Hottiger M.O., Stucki M., Kalali B., Gerhard M., Sartori A.A., Lopes M. Carcinogenic bacterial pathogen Helicobacter pylori triggers DNA double-strand breaks and a DNA damage response in its host cells. Proc. Natl. Acad. Sci. USA. 2011. 108: 14944—14949. DOI: https://doi.org/10.1073/pnas.1100959108

Grasso F., Frisan T. Bacterial Genotoxins: Merging the DNA Damage Response into Infection Biology. Biomolecules. 2015. 5: 1762—1782. DOI: https://doi.org/10.3390/biom5031762

Gur C., Ibrahim Y., Isaacson B., Yamin R., Abed J., Gamliel M., Enk J., Bar-On Y., Stanietsky-Kaynan N., Coppenhagen-Glazer S. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015 42: 344—355. DOI: https://doi.org/10.1016/j.immuni.2015.01.010

Fernández M.F., Reina-Pérez I., Astorga J.M., Rodríguez-Carrillo A., Plaza-Díaz J., Fontana L. Breast Cancer and Its Relationship with the Microbiota. Int. J. Environ. Res. Public. Health. 2018. 15: 1747. DOI: https://doi.org/10.3390/ijerph15081747

Ma W., Mao Q., Xia W., Dong G., Yu C., Jiang F. Gut Microbiota Shapes the Efficiency of Cancer Therapy. Front. Microbiol. 2019. DOI: https://doi.org/10.3389/fmicb.2019.01050

Sears C.L., Garrett W.S. Microbes, microbiota, and colon cancer. Cell Host Microbe. 2014. 15: 317—328. DOI: https://doi.org/10.1016/j.chom.2014.02.007

Brennan C.A., Garrett W.S. Gut microbiota, inflammation, and colorectal cancer. Annu. Rev. Microbiol. 2016. 70: 395—411. DOI: https://doi.org/10.1146/annurev-micro-102215-095513

Hold G.L. Gastrointestinal microbiota and colon cancer. Dig. Dis. 2016. 34(3): 244—250. DOI: https://doi.org/10.1159/000443358

Wei W., Sun W., Yu S., Yang Y., Ai L. Butyrate production from high-fiber diet protects against lymphoma tumor. Leuk. Lymphoma. 2016. 57: 2401—2408. DOI: https://doi.org/10.3109/10428194.2016.1144879

So S.S., Wan M.L., El-Nezami H. Probiotics-mediated suppression of cancer. Current opinion in oncology. 2017. 29(1): 62—72. DOI: https://doi.org/10.1097/CCO.0000000000000342

Smits H.H., Engering A., ven der Kleij D., de Jong E.C., Schipper K., van Capel T.M., Zaat B.A., Yazdanbakhsh M., Wierenga E.A., van Kooyk Y. Selective probiotic bacteria induce IL-10-producing regulatory T-cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J. Allergy Clin. Immunol. 2005. 115(6): 1260—1267. DOI: https://doi.org/10.1016/j.jaci.2005.03.036

Orlando A., Linsalata M., Russo F. Antiproliferative effects on colon adenocarcinoma cells induced by co-administration of vitamin K1 and Lactobacillus rhamnosus GG. Int. J. Oncol. 2016. 48(6): 2629—2638. DOI: https://doi.org/10.3892/ijo.2016.3463

Nouri Z., Karami F., Neyazi N., Modarressi M.H., Karimi R., Khorramizadeh M.R., Taheri B., Motevaseli E. Dual Anti-Metastatic and Anti-Proliferative Activity Assessment of Two Probiotics on HeLa and HT-29 Cell Lines. Cell J. 2016. 18(2): 127—134. DOI: https://doi.org/10.22074/cellj.2016.4307

Hamilton-Miller J.M.T. Probiotics and prebiotics in the elderly. Postgrad. Med. 2004. 80(946): 447—451. DOI: https://doi.org/10.1136/pgmj.2003.015339

Alexander J.L., Wilson I.D., Teare J., Marchesi J.R., Nicholson J.K., Kinross J.M. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat. Rev. Gastroenterol. Hepatol. 2017. 14: 356—365. DOI: https://doi.org/10.1038/nrgastro.2017.20

Sokol H., Adolph T.E. The microbiota: An underestimated actor in radiation-induced lesions? Gut. 2018. 67: 1—2. DOI: https://doi.org/10.1136/gutjnl-2017-314279

Eslami M., Yousefi B., Kokhaei P., Hemati M., Nejad Z.R., Arabkari V., Namdar A. Importance of probiotics in the prevention and treatment of colorectal cancer. J. Cell. Physiol. 2019. 234(10): 17127—17143. DOI: https://doi.org/10.1002/jcp.28473

Hedin C.R.H., Mullard M., Sharratt E., Jansen C., Sanderson J.D., Shirlaw P., Howe L.C., Djemal S., Stagg A.J., Lindsay J.O., Whelan K. Probiotic and prebiotic use in patients with inflammatory bowel disease: a case-control study. Inflamm. Bowel Dis. 2010. 16: 2099—2108. DOI: https://doi.org/10.1002/ibd.21286

Hemarajata P., Versalovic J. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Therap. Adv. Gastroenterol. 2013. 6: 39—51. DOI: https://doi.org/10.1177/1756283X12459294

Caballero-Franco C., Keller K., De Simone C., Chadee K. The VSL#3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. Am. J. Physiol. Gastroint. Liver Physiol. 2007. 292: 315—322. DOI: https://doi.org/10.1152/ajpgi.00265.2006

Resta-Lenert S., Barrett K.E. Probiotics and commensals reverse TNF-alpha- and IFN-gamma-induced dysfunction in human intestinal epithelial cells. Gastroenterology. 2006. 130: 731—746. DOI: https://doi.org/10.1053/j.gastro.2005.12.015

Van Tassell M.L., Miller M.J. Lactobacillus Adhesion to Mucus. Nutrients. 2011. 3(5): 613—636. DOI: https://doi.org/10.3390/nu3050613

Martin F.P., Wang Y., Sprenger N., Yap K.S., Rezzi S., Ramadan Z, Peré-Trepat E., Rochat F., Cherbut C., van Bladeren P.J., Fay L.B., Kochhar S., Lindon J.C., Holmes E., Nicholson J.K. Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model. Mol. Syst. Biol. 2008. 4(1): 157. DOI: https://doi.org/10.1038/msb4100190

Macia L., Thorburn A.N., Binge L.C., Marino E., Rogers K.E, Maslowski K.M., Vieira A.T., Kranich J., Mackay C.R. Microbial influences on epithelial integrity and immune function as a basis for inflammatory diseases. Immunol. 2012. 245: 164—176. DOI: https://doi.org/10.1111/j.1600-065X.2011.01080.x

Distrutti E., Monaldi L., Ricci P., Fiorucci S. Gut microbiota role in irritable bowel syndrome: New therapeutic strategies. World J. Gastroenterol. 2016. 22(7): 2219—2241. DOI: https://doi.org/10.3748/wjg.v22.i7.2219

Maslowski K.M., Vieira A.T., Ng A., Kranich J., Sierro F., Yu D., Schilter H.C., Rolph M.S., Mackay F., Artis D., Xavier R.J., Teixeira M.M., Mackay C.R. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009. 461: 1282—1286. DOI: https://doi.org/10.1038/nature08530

Peng L., Li Z.R., Green R.S., Holzman I.R., Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J. Nutr. 2009. 139: 1619—1625. DOI: https://doi.org/10.3945/jn.109.104638

Videlock E.J., Cremonini F. Meta-analysis: Probiotics in Antibiotic-Associated Diarrhoea. Alimentary Pharmacology & Therapeutics. 2012. 35(12): 1355—1369. DOI: https://doi.org/10.1111/j.1365-2036.2012.05104.x

Yankovsky D.S., Shirobokov V.P., Dyment G.S. Microbiome and human aging. Journal of the National Academy of Medical Sciences of Ukraine. 2019. 25(4): 245—252. DOI: https://doi.org/10.37621/JNAMSU-2019-4-463-475

Yang Y.J., Chuang C.C., Yang H.B., Lu C.C., Sheu B.S. Lactobacillus acidophilus ameliorates H. pylori-induced gastric inflammation by inactivating the Smad7 and NFkappaB pathways. BMC Microbiol. 2012. 12: 38. DOI: https://doi.org/10.1186/1471-2180-12-38

Ghadimi D., Vrese M., Heller K.J., Schrezenmeir J. Effect of natural commensal-origin DNA on toll-like receptor 9 (TLR9) signaling cascade, chemokine IL-8 expression, and barrier integrity of polarized intestinal epithelial cells. Inflamm. Bowel Dis. 2010. 16: 410—427. DOI: https://doi.org/10.1002/ibd.21057

Maldonado Galdeano C., Cazorla S.I., Lemme Dumit J.M., Vélez E., Perdigón G. Beneficial Effects of Probiotic Consumption on the Immune System. Ann. Nutr. Metab. 2019. 74(2): 115—124. DOI: https://doi.org/10.1159/000496426

Matsumoto M., Kibe R., Ooga T., Aiba Y., Sawaki E., Koga Y., Benno Y. Cerebral low-molecular metabolites influenced by intestinal microbiota: a pilot study. Front. Syst. Neurosci. 2013. 7: 9. DOI: https://doi.org/10.3389/fnsys.2013.00009

Rimoldi M., Chieppa M., Larghi P., Vulcano M., Allavena P., Rescigno M. Monocyte-derived dendritic cells activated by bacteria or by bacteria-stimulated epithelial cells are functionally different. Blood. 2005. 106: 2818—2826. DOI: https://doi.org/10.1182/blood-2004-11-4321

Lopez P., Gueimonde M., Margolles A., Suarez A. Distinct Bifidobacterium strains drive different immune responses in vitro. Int. J. Food Microbiol. 2010. 138: 157—165. DOI: https://doi.org/10.1016/j.ijfoodmicro.2009.12.023

Riaz Rajoka M.S., Shi J., Zhu J., Shao D., Huang Q., Yang H. Capacity of lactic acid bacteria in immunity enhancement and cancer prevention. Appl. Microbiol. Biotechnol. 2017. 101(1): 35—45. DOI: https://doi.org/10.1007/s00253-016-8005-7

Roselli M., Finamore A., Nuccitelli S., Carnevali P., Brigidi P., Vitali B., Nobili F., Rami R., Garaguso I., Mengheri E. Prevention of TNBS-induced colitis by different Lactobacillus and Bifidobacterium strains is associated with as expansion of γδT and regulatory T cells of intestinal intraepithelial lymphocytes. Inflamm. Bowel Dis. 2009. 15(10): 1526—1536. DOI: https://doi.org/10.1002/ibd.20961

Shyrobokov V.P., Yankovskiy D.S., Dyment G.S. New strategies in the field of developing and clinical application of probiotics. Journal of Pharmacology and Pharmacy. 2010. 2: 18—30. (in Russsian).

Cunningham-Rundles S., Ahrné S., Johann-Liang R., Abuav R., Dunn-Navarra A.M., Grassey C., Bengmark S., Cervia J.S. Effect of probiotic bacteria on microbial host defense, growth, and immune function in human immunodeficiency virus type-1 infection. Nutrients. 2011. 3: 1042—1070. DOI: https://doi.org/10.3390/nu3121042

Di Giacinto C., Marinaro M., Sanchez M., Strober W., Boirivant M. Probiotics meliorate recurrent Th1-mediated murine colitis by inducing IL-10 and IL-10-dependent TGF-beta-bearing regulatory cells. J. Immunol. 2005. 174(6): 3237—3246. DOI: https://doi.org/10.4049/jimmunol.174.6.3237

Hardy H., Harris J., Lyon E., Beal J., Foey A.D. Probiotics, Prebiotics and Immunomodulation of Gut Mucosal Defences: Homeostasis and Immunopathology. Nutrients. 2013. 5: 1869—1912. DOI: https://doi.org/10.3390/nu5061869

Kleerebezem M., Vaughan E.E. Probiotic and gut lactobacilli and bifidobacteria: molecular approaches to study diversity and activity. Ann. Rev. Microbiol. 2009. 63: 269—290. DOI: https://doi.org/10.1146/annurev.micro.091208.073341

Matsumoto S., Hara T., Nagaoka M., Mike A., Mitsuyama K., Sako T., Yamamoto M., Kado S., Takada T. A component of polysaccharide peptidoglycan complex on Lactobacillus induced an improvement of murine model of inflammatory bowel disease and colitis-associated cancer. Immunology. 2009. 128(1): 170—180. DOI: https://doi.org/10.1111/j.1365-2567.2008.02942.x

Quan Toh Z.A., Anzela A., Tang M.L.K., Licciardi P.V. Probiotic therapy as a novel approach for allergic disease. Front. Pharmacol. 2012. 6: 533—548. DOI: https://doi.org/10.3389/fphar.2012.00171

Steed H., Macfarlane G.T., Macfarlane S. Prebiotics, synbiotics and inflammatory bowel disease. Mol. Nutr. Food Res. 2008. 52(8): 898—905. DOI: https://doi.org/10.1002/mnfr.200700139

De Wolfe T.J., Eggers S., Barker A.K., Kates A.E., Dill-McFarland K.A., Suen G., Safdar N. Oral probiotic combination of Lactobacillus and Bifidobacterium alters the gastrointestinal microbiota during antibiotic treatment for Clostridium difficile infection. PLoS One. 2018. 13: e0204253. DOI: https://doi.org/10.1371/journal.pone.0204253

Thomas C., Versalovic J. Probiotics-host communication: modulation of signaling pathways in the intestine. Gut Microbes. 2010. 1(3): 148—163. DOI: https://doi.org/10.4161/gmic.1.3.11712

Preidis G.A., Versalovic J. Targeting the human microbiome with antibiotic, probiotics, and prebiotics: gastroenterology enters the metagenomic era. Gastroenterology. 2009. 136(6): 2015—2031. DOI: https://doi.org/10.1053/j.gastro.2009.01.072

Yu L.X., Schwabe R.F. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat. Rev. Gastroenterol. Hepatol. 2017. 14: 527—539. DOI: https://doi.org/10.1038/nrgastro.2017.72

Sivan A., Corrales L., Hubert N., Williams J.B., Aquino Michaels K., Earley Z.M., Benyamin F.W., Lei Y.M., Jabri B., Alegre M.L., Chang E.B., Gajewski T.F. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PDL1 efficacy. Science. 2015. 350: 1084—1089. DOI: https://doi.org/10.1126/science.aac4255

Taverniti V., Guglielmetti S. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes Nutr. 2011. 6(3): 261—274. DOI: https://doi.org/10.1007/s12263-011-0218-x

Hart A.L., Lammers K., Brigidi P., Vitali B., Rizzello F., Gionchetti P., Campieri M., Kamm M.A., Knight S.C., Stagg A.J. Modulation of human dendritic cell phenotype and function by probiotic bacteria. Gut. 2004. 53: 1602—1609. DOI: https://doi.org/10.1136/gut.2003.037325

Tanoue T., Morita S., Plichta D.R., Skelly A.N., Suda W., Sugiura Y., Narushima S., Vlamakis H., Motoo I., Sugita K. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature. 2019. 565: 600—605. DOI: https://doi.org/10.1038/s41586-019-0878-z

Frankel A.E., Deshmukh S., Reddy A., Lightcap J., Hayes M., McClellan S., Singh S., Rabideau B., Glover T.G., Roberts B. Cancer Immune Checkpoint Inhibitor Therapy and the Gut Microbiota. Integr. Cancer Ther. 2019. 18. DOI: https://doi.org/10.1177/1534735419846379

Shyrobokov V.P., Yankovskyy D.S., Dyment G.S. Microbes in biogeochemical processes, evolution of biosphere and human life. Kyiv: Veres O.I., 2014. (in Russian).

Borchers A.T., Selmi C., Meyers F.J., Keen C.L., Gershwin M.E. Probiotics and immunity. J. Gastroenterol. 2009. 44: 26—46. DOI: https://doi.org/10.1007/s00535-008-2296-0

##submission.downloads##

Опубліковано

2021-11-18

Як цитувати

Широбоков, В. П., Янковський, Д. С., & Димент, Г. С. (2021). Роль мікробіома в розвитку онкологічної патології. Вісник Національної академії наук України, (11), 24–42. вилучено із http://visnyk-nanu.org.ua/ojs/index.php/v/article/view/173