Visn. Nac. Akad. Nauk Ukr. 2019. (10): 31-37
https://doi.org/10.15407/visn2019.10.031

K.V. Terletska
Institute of Mathematical Machines and Systems Problems of the National Academy of Sciences of Ukraine, Kyiv

MODELING OF GRAVITY CURRENTS IN OCEANS AND INLAND RESERVOIRS
According to the materials of scientific report at the meeting of the Presidium of NAS of Ukraine, September 11, 2019

State-of-the-art oceanographic issues related to stratified flows, such as gravity currents on the continental slope near the Antarctic Peninsula, where the Ukrainian Antarctic Station Vernadsky Research Base is located, generation and propagation of internal waves in the seas and oceans and their role in the mixing in the coastal zones are considered.
Keywords: stratified flows, internal waves, internal waves breaking over the shelf, gravity currents

Language of article: ukrainian

 Full text (PDF)

REFERENCES

  1. Gill A.E. Atmosphere — Ocean Dynamics. Academic Press,1982.
  2. Parnum I., MacLeod R., Alec D., Gavrilov A. The effect of internal waves on underwater sound propagation. Acoustics. 2017. 24: 1. https://www.acoustics.asn.au/conference_proceedings/AAS2017/papers/p76.pdf
  3. Duda T.F., Preisig J.C. A Modeling Study of Acoustic Propagation Through Moving Shallow-Water Solitary Wave Packets. IEEE Journal of Oceanic Engineering. 1999. 24(1): 16. DOI: https://doi.org/10.1109/48.740153
  4. Song Z.J., Teng B., Gou Y. et al. Comparisons of internal solitary wave and surface wave actions on marine structures and their responses. Applied Ocean Res. 2011. 33: 120. DOI: https://doi.org/10.1016/j.apor.2011.01.003
  5. Quaresma L., Vitorino A., Oliveira A. da Silva J.C.B. Evidence of sediment resuspension by nonlinear internal waves on the western Portuguese mid-shelf. Marine Geology. 2007. 246(2-4): 3550. DOI: https://doi.org/10.1016/j.margeo.2007.04.019
  6. Wunsch C., Ferrari R. Vertical mixing, energy, and the general circulation of the oceans Annu. Rev. Fluid Mech. 2004. 36: 281. DOI: https://doi.org/10.1146/annurev.fluid. 36.050802.122121  
  7. Marshall J., Hill C.,Perelman L., Adcroft A. Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modelling. J. Geophys. Res. 1997. 102(C3): 5733. DOI: https://doi.org/10.1029/96JC02776
  8. Maderich V., Brovchenko I., Terletska K., Hutter K. Numerical simulations of the nonhydrostatic transformation of basin-scale internal gravity waves and wave-enhanced meromixis in lakes. In: Hutter K. (ed.) Nonlinear internal waves in lakes. Series: Advances in Geophysical and Environmental Mechanics. Springer, 2012. P. 193–276. DOI: https://doi.org/10.1007/978-3-642-23438-5
  9. Maderich V., Jung K.T., Terletska K., Brovchenko I., Talipova T. Incomplete similarity of internal solitary waves with trapped core. Fluid Dyn. Res. 2015. 47(3): 035511. DOI: https://doi.org/10.1088/0169-5983/47/3/035511
  10. Talipova T., Terletska K., Maderich V., Brovchenko I., Jung K.T., Pelinovsky E., Grimshaw R. Internal solitary wave transformation over a bottom step: loss of energy. Phys. Fluids. 2013. 25(3): 032110. DOI: https://doi.org/10.1063/1.4797455
  11. Terletska K., Jung K.T., Maderich V., Kim K.O. Frontal collision of internal solitary waves of first mode. Wave Motion. 2018. 77: 229. DOI: https://doi.org/10.1016/j.wavemoti.2017.12.006
  12. Wessels F., Hutter, K. Interaction of internal waves with a topographic sill in a two-layered fluid. Journal of Physical Oceanography. 1996. 26(2): 5. https://doi.org/10.1175/1520-0485(1996)026<0005:IOIWWA>2.0.CO;2
  13. Foldvik A., Gammelsrod T., Osterhus S. et al. Formation and discharge of deep and bottom water in the northwestern Weddell Sea. J. Mar. Res. 1995. 53(4): 515. DOI: https://doi.org/10.1357/0022240953213089
  14. Darelius E., Wahlin A.K. Downward flow of dense water leaning on a submarine ridge. Deep Sea Res. Part I. 2007. 54(7): 1173. DOI: https://doi.org/10.1016/j.dsr.2007.04.007
  15. Wang Q., Danilov S., Schroeter J. Bottom water formation in the southern Weddell Sea and the influence of submarine ridges: Idealized numerical simulations. Ocean Modelling. 2008. 28(1-3): 50. DOI: https://doi.org/10.1016/j.ocemod.2008.08.003
  16. Wilchinsky A.V., Feltham D.L. Numerical simulation of the Filchner overflow. J. Geophys. Res. 2009. 114(C12): 12012. DOI: https://doi.org/10.1029/2008JC005013
  17. Zhang Y.J., Baptista A.M. SELFE: A semi-implicit Eulerian–Lagrangian finite-element model for cross-scale ocean circulation. Ocean Modelling. 2008. 21 (3-4): 71. DOI: https://doi.org/10.1016/j.ocemod.2007.11.005
  18. Maderich V., Terletska K., Brovchenko I. Structure and dynamics of gravity currents on a slope: a flow of transformed under the Ronne-Filchner ice water in the Weddell Sea. Ukrainian Antarctic Journal. 2010. (9): 263. http://dspace.nbuv.gov.ua/bitstream/handle/123456789/128422/25-Maderich.pdf?sequence=1
  19. Maderich V., Terletska K., Brovchenko I. Modelling of multi-scale processes of formation of bottom and shelf waters in the southern part of the Weddell Sea. Ukrainian Antarctic Journal. 2017. 16: 45. DOI: https://doi.org/10.33275/1727-7485.16.2017.60