Visn. Nac. Akad. Nauk Ukr. 2019. (4):42-49
https://doi.org/10.15407/visn2019.04.042

N.I. Khripta
Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, Kyiv

THE PROBLEM OF BIOMECHANICAL COMPATIBILITY OF METALLIC MATERIALS AND WAYS OF SOLVING IT
According to the materials of scientific report at the meeting of the Presidium of NAS of Ukraine, February 27, 2019

The required properties of metallic biomaterials are analyzed in view of their biochemical/biomechanical compatibility, high X-ray contrast, and reduced magnetic susceptibility. As established, the purposeful alloying and/or thermomechanical treatment result in acceptable biocompatibility characteristics of metallic materials such as high corrosion resistance in biological fluids, reduced elastic modulus, increased degree of reversible deformation and fatigue life. The method of ultrasonic impact treatment (UIT) is developed for the nanostructuring and mechanochemical oxidation of the surface layers of metallic alloys by surface severe plastic deformation. The efficiency of the method is illustrated by experimental results indicating on the increased corrosion resistance, reversible deformation, and fatigue resistance at cyclic loads of the Zr1Nb, Ti6Al4V, ZrTiNb, and TiZrNbTa alloys. The advantages of the developed UIT process in the sense of solving the problem of biomechanical compatibility of metallic materials and producing the orthopedic constructions and implants are shown.
Keywords: zirconium/titanium alloys, structure, ultrasonic impact treatment, ultrafine/nano grains, deformation, oxidation, corrosion resistance.

Language of article: ukrainian

 

REFERENCES

1.     Kuroda. D., Niinomi M., Morinaga M., KatoY., Yashiro T. Design and mechanical properties of new β type titanium alloys for implant materials. Mater. Sci. Eng. A. 1998. 243(1-2): 244. https://doi.org/10.1016/S0921-5093(97)00808-3

2.      Chen Q., Thouas G.A. Metallic implant biomaterials. Mater. Sci. Eng. R. 2015. 87: 1. https://doi.org/10.1016/j.mser.2014.10.001

3.     Khan M.A., Williams R.L., Williams D.F. The corrosion behaviour of Ti–6Al–4V, Ti–6Al–7Nb and Ti–13Nb–13Zr in protein solutions. Biomaterials. 1999. 20(7): 631. https://doi.org/10.1016/S0142-9612(98)00217-8

4.     Martins D.Q., Souza M.E.P., Souza S.A., Andrade D.C., Freire M.A., Caram R. Solute segregation and its influence on the microstructure and electrochemical behavior of Ti–Nb–Zr alloys. J. Alloys Compd. 2009. 478(1-2): 111. https://doi.org/10.1016/j.jallcom.2008.11.030

5.     Eisenbarth E., Velten D., Müller M., Thull R., Breme J. Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials. 2004. 25(26): 5705. https://doi.org/10.1016/j.biomaterials.2004.01.021

6.     Tallarico D.A., Gobbi A.L., Paulin Filho P.I., Maia da Costa M.E.H., Nascente P.A.P. Growth and surface characterization of TiNbZr thin films deposited by magnetron sputtering for biomedical applications. Mater. Sci. Eng. C. 2014. 43: 45. https://doi.org/10.1016/j.msec.2014.07.013

7.     Cotrut C.M., Balaceanu M., Titorencu I., Braic V., Braic M. ZrNbCN thin films as protective layers in biomedical applications. Surf. Coat. Technol. 2012. 211: 57. https://doi.org/10.1016/j.surfcoat.2011.08.016

8.     Hsu H.-C., Wu S.-C., Sung Y.-C., Ho W.-F. The structure and mechanical properties of as-cast Zr–Ti alloys. J. Alloys Compd. 2009. 488 (1): 279. https://doi.org/10.1016/j.jallcom.2009.08.105

9.     Khripta N.I., Mordyuk B.N., Karasevskaya O.P. et al. Effect of structural and phase transformations induced by ultrasonic impact peening on the corrosion resistance of Zr-based alloys. Metallofizika i Noveishie Tekhnologii. 2008. 30: 369 (in Russian).

10. Aguilar Maya A.EGrana., D.R., Hazarabedian A., Kokubu G.A., Luppo M.I. Vigna G. Zr–Ti–Nb porous alloys for biomedical application. Mater. Sci. Eng. C. 2012. 32(2): 321. https://doi.org/10.1016/j.msec.2011.10.035

11. Hernigou P., Mathieu G., Poignard A., Filippini P., Demoura A. Oxinium, a new alternative femoral bearing surface option for hip replacement. Eur. J. Orthop. Surg. Traumatol. 2007. 17(3): 243. https://doi.org/10.1007/s00590-006-0180-2

12. Sonntag R., Reinders J., Kretzer J.P. What’s next? Alternative materials for articulation in total joint replacement. Acta Biomater. 2012. 8(7): 2434. https://doi.org/10.1016/j.actbio.2012.03.029

13. Nomura N.et.al. Proc. of Eighteenth International Conference on Processing and Fabrication of Advanced Materials (PFAM-XVIII). 2009. 3: 1205.

14. Bauer S., Schmuki P., von der Mark K., Park J. Engineering biocompatible implant surfaces. Part I: Materials and surfaces. Progress Mater. Sci. 2013. 58(3): 261. https://doi.org/10.1016/j.pmatsci.2012.09.001

15. Dekhtyar A.I., Mordyuk B.N., Savvakin D.G., Bondarchuk V.I., Moiseeva I.V., Khripta N.I. Enhanced fatigue behavior of powder metallurgy Ti-6Al-4V alloy by applying ultrasonic impact treatment. Mater. Sci. Eng. A. 2015. 641: 348. https://doi.org/10.1016/j.msea.2015.06.072

16. Petrov Yu.N., Prokopenko G.I., Mordyuk B.N., Vasylyev M.A., Voloshko S.M., Skorodzievski V.S., Filatova V.S. Influence of microstructural modifications induced by ultrasonic impact treatment on hardening and corrosion behavior of wrought Co-Cr-Mo biomedical alloy. Mater. Sci. Eng. C. 2016. 58: 1024. https://doi.org/10.1016/j.msec.2015.09.004

17. Chenakin S.P., Filatova V.S., Makeeva I.N., Vasylyev M.A. Ultrasonic impact treatment of CoCrMo alloy: Surface composition and properties. App. Surf. Sci. 2017. 408: 11. https://doi.org/10.1016/j.apsusc.2017.03.004

18. Mordyuk B.N., Karasevskaya O.P., Prokopenko G.I., Khripta N.I. Ultrafine-grained textured surface layer on Zr–1%Nb alloy produced by ultrasonic impact peening for enhanced corrosion resistance. Surf. Coat. Technol. 2012. 210: 54. https://doi.org/10.1016/j.surfcoat.2012.08.063

19. Mordyuk B.M., Karasevska O.P., Khripta N.I., Prokopenko G.I., Vasylyev M.O. Structural Dependence of Corrosion Properties of Zr—1.0% Nb Alloy in Saline Solution. Metallofizika i Noveishie Tekhnologii. 2014. 36(7): 917. https://doi.org/10.15407/mfint.36.07.0917 

20. Vasylyev M.A. Chenakin S.P., Yatsenko L.F. Ultrasonic impact treatment induced oxidation of Ti6Al4V alloy. Acta Materialia 2016. 103: 761. https://doi.org/10.1016/j.actamat.2015.10.041

21. Chenakin S.P., Mordyuk B.N., Khripta N.I. Surface characterization of a ZrTiNb alloy: Effect of ultrasonic impact treatment. App. Surf. Sci. 2019. 470: 44. https://doi.org/10.1016/j.apsusc.2018.11.116

22. United States Patent 7473278. Hunter G., Jani S.C., Pawar V. Method of surface oxidizing zirconium and zirconium alloys and resulting product. Pub. Date: 01.06.2009.

23. Timoshevskii A.N., Yablonovskii S.O., Ivasishin O.M. First principles calculations atomic structure and elastic properties of Ti-Nb alloys. Functional Materials. 2012. 19(2): 266.

24. Lee H., Kim D., Jung J., Pyoun Y., Shin K. Influence of peening on the corrosion properties of AISI 304 stainless steel. Corros. Sci. 2009. 51(12): 2826. https://doi.org/10.1016/j.corsci.2009.08.008

25. Ivasishin O.M., Popov A.A., Karasevska O.P., Markovskyy P.E., Mordyuk B.M., Skiba I.O., Illarionov A.G. Formation of Nanostructured omega-Phase in Deformed Metastable beta-Alloys Based on Ti and Zr. Metallofizika i Noveishie Tekhnologii. 2011. 33(5): 675.

26. Patent of Ukraine No. 84993. Mordyuk B.N., Prokopenko G.I., Khripta N.I. et al. Method of ultrasonic surface treatment of long products. Pub. Date: 10.12.2008.

Full text (PDF)