Visn. Nac. Akad. Nauk Ukr. 2017. (12): 28-34
https://doi.org/10.15407/visn2017.12.028

Yu.V. Malyukin
Institute for Scintillation Materials of National Academy of Sciences of Ukraine, Kharkiv

NEW LUMINESCENT NANOMATERIALS: FUNCTIONAL PROPERTIES, BIOMEDICAL AND TECHNICAL APPLICATIONS
According to the materials of scientific report at the meeting of the Presidium of NAS of Ukraine, October 11, 2017

The report presents the results of investigations of the luminescence properties of a new class of nano-materials — polyfunctional redox-active nanocrystals that can simultaneously take an active part in biological processes occurring at the level of individual cells and are characterized by the presence of their own luminescence, the intensity of which correlates with the pro-/antioxidant activity of nanoparticles. As the most promising redox-active nanomaterials, cerium dioxide nanocrystals (CeO2-x) and orthovanadates of RE elements (ReVO4:Eu3+) are analyzed. Studies carried out with the help of stationary and time-resolved spectroscopy methods involving controlled change of redox-status of NPs surrounding, show that they can both directly demonstrate the anti-/prooxidant effect, and act as an intermediate in the processes of generation of singlet oxygen by photosensitizer molecules. The prospect of using nanocrystals for a range of biomedical applications as materials for the needs of photodynamic therapy and biological antioxidants is shown.
Keywords: nanocrystals, antioxidants, photodynamic therapy.

 Language of article: ukrainian

 

REFERENCES

  1. http://www.who.int/topics/essential_medicines/
  2. Wagner V., Dullaart A., Bock A.K., Zweck A. The emerging nanomedicine landscape. Nature Biotechnology. 2006. 24(10): 1211. http://dx.doi.org/10.1038/nbt1006-1211
  3. Peer D., Karp J.M., Hong S., Farokhzad O.C., Margalit R., Langer R. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology. 2007. 2(12): 751. http://dx.doi.org/10.1038/nnano.2007.387
  4. Pezzini I., Marino A., Del Turco S., Nesti C., Doccini S., Cappello V., Gemmi M., Parlanti P., Santorelli F.M., Mattoli V., Ciofani G. Cerium oxide nanoparticles: the regenerative redox machine in bioenergetic imbalance. Nanomedicine. 2017. 12(4): 403. http://dx.doi.org/10.2217/nnm-2016-0342
  5. Korsvik C., Patil S., Seal S., Self W.T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chemical Communications. 2007. (10): 1058. http://dx.doi.org/10.1039/b615134e
  6. Finkel T., Holbrook N.J. Oxidants, oxidative stress and the biology of ageing. Nature. 2000. 408(6809): 239. http://dx.doi.org/10.1038/35041687
  7. Rhee S.G. H2O2, a necessary evil for cell signaling. Science. 2006. 312(5782): 1882. http://dx.doi.org/10.1126/science.1130481
  8. Lee S.S., Song W., Cho M., Puppala H.L., Nguyen P., Zhu H., Segatori L., Colvin V.L. Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating. ACS Nano. 2013. 7(11): 9693. http://dx.doi.org/10.1021/nn4026806
  9. Perez J.M., Asati A., Nath S., Kaittanis C. Synthesis of biocompatible dextran‐coated nanoceria with pH‐dependent antioxidant properties. Small. 2008. 4(5): 552. http://dx.doi.org/10.1002/smll.200700824
  10. Das M., Patil S., Bhargava N., Kang J.F., Riedel L.M., Seal S., Hickman J.J. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials. 2007. 28(10): 1918. http://dx.doi.org/10.1016/j.biomaterials.2006.11.036
  11. Kim C.K., Kim T., Choi I.Y., Soh M., Kim D., Kim Y.J., Jang H., Yang H.S., Kim J.Y., Park H.K., Park S.P. Ceria nanoparticles that can protect against ischemic stroke. Angewandte Chemie. 2012. 124(44): 11201. http://dx.doi.org/10.1002/anie.201203780
  12. Masalov A., Viagin O., Maksimchuk P., Seminko V., Bespalova I., Aslanov A., Malyukin Y., Zorenko Y. Formation of luminescent centers in CeO2 nanocrystals. Journal of Luminescence. 2014. 145: 61. http://dx.doi.org/10.1016/j.jlumin.2013.07.020
  13. Seminko V., Maksimchuk P., Bespalova I., Masalov A., Viagin O., Okrushko E., Kononets  N., Malyukin Y. Defect and intrinsic luminescence of CeO2 nanocrystals. Physica Status Solidi B. 2017. 254(4): http://dx.doi.org/10.1002/pssb.201600488
  14. Seminko V., Masalov A., Maksimchuk P., Klochkov V., Bespalova I., Viagin O., Malyukin Y. Spectroscopic Properties of Nanoceria Allowing Visualization of Its Antioxidant Action. In: Nanomaterials for Security. (Springer, 2016). P. 149–157.
  15. Malyukin Y., Klochkov V., Maksimchuk P., Seminko V., Spivak N. Oscillations of cerium oxidation state driven by oxygen diffusion in colloidal nanoceria (CeO2−x). Nanoscale Research Letters.2017. 12(1): 566. https://doi.org/10.1186/s11671-017-2339-7 
  16. Macdonald I.J., Dougherty T.J. Basic principles of photodynamic therapy. Journal of Porphyrins and Phthalocyanines. 2001. 5(02): 105. https://doi.org/10.1002/jpp.328
  17. Dolmans D.E., Fukumura D., Jain R.K. Photodynamic therapy for cancer. Nature Reviews Cancer. 2003. 3(5): 380. https://doi.org/10.1038/nrc1071
  18. Chen W., Zhang J. Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. Journal of Nanoscience and Nanotechnology. 2006. 6(4): 1159. https://doi.org/10.1166/jnn.2006.327
  19. Yefimova S.L., Tkacheva T.N., Maksimchuk P.O., Bespalova I.I., Hubenko K.O., Klochkov V.K., Sorokin A.V., Malyukin Y.V. GdVO4: Eu3+ nanoparticles–Methylene Blue complexes for PDT: Electronic excitation energy transfer study. Journal of Luminescence. 2017. 192: 975. https://doi.org/10.1016/j.jlumin.2017.08.044