Visn. Nac. Akad. Nauk Ukr. 2016. (1): 107-118
https://doi.org/10.15407/visn2016.01.107

A.G. Zagorodny
Bogolyubov Institute for Theoretical Physics of National Academy of Sciences of Ukraine, Kyiv

FOUNDATION AND DEVELOPMENT OF BOGOLYUBOV INSTITUTE FOR THEORETICAL PHYSICS OF NAS OF UKRAINE 
On the 50th anniversary of the Institute

Abstract:
The milestones in the history of the Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, formation and development of scientific schools are overviewed. The main directions of research of the Institute and the most important scientific results are highlighted. 

 

Language of article: ukrainian

REFERENCES

  1. Boyarsky A., Ruchayskiy O., Iakubovskyi D., Franse J. Unidentified line in X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster. Phys. Rev. Lett. 2014. 113(25): 251301. http://doi.org/10.1103/PhysRevLett.113.251301
  2. Boyarsky A., Franse J., Iakubovskyi D., Ruchayskiy O. Checking the dark matter origin of a 3.53 keV line with the Milky Way center. Phys. Rev. Lett. 2015. 115(16): 161301. http://doi.org/10.1103/PhysRevLett.115.161301
  3. Gazdzicki M., Gorenstein M.I. Structure and dynamics of elementary matter. Acta Phys. Polon. B. 1999. 30: 2705.
  4. Gusynin V.P., Sharapov S.G. Unconventional integer quantum Hall effect in graphene. Phys. Rev. Lett. 2005. 95(14): 146801. http://doi.org/10.1103/PhysRevLett.95.146801
  5. Zhang Y., Tan Y.-W., Stormer H.L., Kim P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature. 2005. 438: 201. http://doi.org/10.1038/nature04235
  6. Gusynin V.P., Sharapov S.G., Carbotte J.P. Unusual microwave response of Dirac quasiparticles in graphene. Phys. Rev. Lett. 2006. 96(25): 256802. http://doi.org/10.1103/PhysRevLett.96.256802
  7. Kravchuk V., Sheka D., Gaididei Yu., Mertens F.G. Controlled vortex switching in magnetic nanodisks by a rotating magnetic field. J. Appl. Phys. 2007. 102(4): 043908. http://doi.org/10.1063/1.2770819
  8. Kravchuk V.P., Gaididei Yu., Sheka D.D. Nucleation of a vortex-antivortex pair in the presence of an immobile magnetic vortex. Phys. Rev. B. 2009. 80(10): 100405(R). http://doi.org/10.1103/PhysRevB.80.100405
  9. Volkov O.M., Kravchuk V.P., Sheka D.D., Gaididei Yu. Spin-transfer torque and current-induced vortex superlattices in nanomagnets. Phys. Rev. B. 2011. 84(5): 052404. http://doi.org/10.1103/PhysRevB.84.052404
  10. Gaididei Yu., Volkov O.M., Kravchuk V.P., Sheka D.D. Magnetic vortex-antivortex crystals generated by spin-polarized current. Phys. Rev. B. 2012. 86(14): 144401. http://doi.org/10.1103/PhysRevB.86.144401
  11. Gaididei Yu., Kravchuk V.P., Sheka D.D. Curvature effects in thin magnetic shells. Phys. Rev. Lett. 2014. 112(25): 257203. http://doi.org/10.1103/PhysRevLett.112.257203
  12. Sheka D.D., Kravchuk V.P., Gaididei Yu. Curvature effects in statics and dynamics of low dimensional magnets. J. Phys. A. 2015. 48(12): 125202. http://doi.org/10.1088/1751-8113/48/12/125202
  13. Pylypovskyi O.V., Kravchuk V.P., Sheka D.D., Makarov D., Schmidt O.G., Gaididei Yu. Coupling of chiralities in spin and physical spaces: The Möbius ring as a case study. Phys. Rev. Lett. 2015. 114(19): 197204. http://doi.org/10.1103/PhysRevLett.114.197204
  14. Lev B.I., Zhugayevich A.Ya. Statistical description of model systems of interacting particles and phase transitions accompanied by cluster formation. Phys. Rev. E. 1998. 57: 6460. http://.doi.org/10.1103/PhysRevE.57.6460
  15. Grigorishin K.V., Lev B.I. Cluster formation in the system of interacting Bose particles. Phys. Rev. E. 2005. 71(6): 066106. http://dx.doi.org/10.1103/PhysRevE.71.066105
  16. Lev B.I. Nonequilibrium self-gravitating system. Int. J. Mod. Phys. B. 2011. 25(16): 2237. http://doi.org/10.1142/S0217979211100771
  17. Lev B.I., Zagorodny A.G. Statistical description of Coulomb-like systems. Phys. Rev. E. 2011. 84: 061115. http://doi.org/10.1103/PhysRevE.84.061115
  18. Turiv T., Lazo I., Brodin A., Lev B.I., Reiffenrath V., Nazarenko V.G., Lavrentovych O.D. Effect of collective molecular reorientation on Brownian motion of colloids in nematic liquid crystal. Science. 2013. 342(6164): 1351. http://doi.org/10.1126/science.1240591
  19. Lev B.I., Zagorodny A.G. Pattern formation in the models with coupling between order parameter and its gradient. Eur. Phys. J. B. 2013. 86(10): 422. http://doi.org/10.1140/epjb/e2013-40674-1
  20. Lev B.I., Rozhkov S.S., Zagorodny A.G. Model of a scalar field coupled to its gradients. Europhys. Lett. 2015. 111(2): 26003. http://doi.org/10.1209/0295-5075/111/26003
  21. Petrov E.G. Towards a many-body theory of the combined elastic and inelastic transmission through a single molecule. Chem. Phys. 2006. 326(1): 151. http://doi.org/10.1016/j.chemphys.2006.04.016
  22. Petrov E.G. Formation of a current through organic molecules with strongly separated energy levels. Mol. Cryst. Liq. Cryst. 2007. 467(1): 3. http://doi.org/10.1080/15421400701220361
  23. Petrov E.G., Shevchenko Ye.V., May V., Hanggi P. Transient switch-on/off currents in molecular junctions. J. Chem. Phys. 2011. 134(20): 204701. http://doi.org/10.1063/1.3582927
  24. Milias-Argeitis A., Lygeros J. Steady-state simulation of metastable stochastic chemical systems. J. Chem. Phys. 2013. 138(18): 184109. http://doi.org/10.1063/1.4804191
  25. Petrov E.G., Marchenko A., Kapitanchuk O.L., Katsonis N., Fichou D. Conductance mechanism in a linear non-conjugated trimethylsilyl-acetylene molecule: tunneling through localized states. Mol. Cryst. Liq. Cryst. 2014. 589(1): 3. http://doi.org/10.1080/15421406.2013.871847
  26. Schram P.P., Sitenko A.G., Trigger S.A., Zagorodny A.G. Statistical theory of dusty plasmas: Microscopic equations and Bogolyubov-Born-Green-Kirkwood-Yvon hierarchy. Phys. Rev. E. 2001. 63(1): 016403. http://doi.org/10.1103/PhysRevE.63.016403
  27. Zagorodny A.G. Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy and the kinetic theory of dusty plasmas. Theor. Math. Phys. 2009. 160(2): 1101. http://doi.org/10.1007/s11232-009-0103-6
  28. Bystrenko O., Zagorodny A. Screening of dust grains in a weakly ionized gas. Effects of charging by plasma currents. Phys. Rev. E. 2003. 67(6): 066403. http://doi.org/10.1103/PhysRevE.67.066403
  29. Bystrenko T., Zagorodny A. Effects of bound states in the screening of dust particles in plasmas. Phys. Lett. A. 2002. 299(4): 383. http://doi.org/10.1016/S0375-9601(02)00661-8
  30. Filippov A.V., Zagorodny A.G., Momot A.I., Pal A.F., Starostin A.N. Kinetic description of the screening of the charge of macroparticles in a nonequilibrium plasma. JETP Lett. 2007. 86(12): 761. http://doi.org/10.1134/S0021364007240034
  31. Semenov I.L., Zagorodny A.G., Krivtsun I.V. A kinetic study of dust grain screening based on the numerical solution of the Vlasov-Bhatnagar-Gross-Krook equations. Phys. Plasmas. 2011. 18(10): 102110. http://doi.org/10.1063/1.3646918
  32. Filippov A.V., Zagorodny A.G., Momot A.I, Pal’ A.F., Starostin A.N. Screening of a moving charge in a nonequilibrium plasma. J. Exp. Theor. Phys. 2009. 108(3): 497. http://doi.org/10.1134/S1063776109030145
  33. Semenov I.L., Zagorodny A.G., Krivtsun I.V. Ion drag force on a dust grain in a weakly ionized collisional plasma. Phys. Plasmas. 2013. 20(1): 013701. http://doi.org/10.1063/1.4773438
  34. Lev B., Tymchyshyn V., Zagorodny A. Influence of charging current fluctuations on the grain velocity distribution in weakly-ionized plasmas. Phys. Lett. A. 2011. 375(3): 593. http://doi.org/10.1016/j.physleta.2010.12.020