Visn. Nac. Akad. Nauk Ukr. 2016. (1): 20-29
https://doi.org/10.15407/visn2016.01.020

F.A. Danevich, V.V. Kobychev, V.I. Tretyak
Institute for Nuclear Research of the National Academy of Sciences of Ukraine, Kyiv

NEUTRINOS ARE MASSIVE
Nobel Prize in Physics 2015

Abstract:
The Nobel Prize in Physics 2015 was awarded jointly to Arthur B. McDonald (Canada) and Takaaki Kajita (Japan) "for the discovery of neutrino oscillations, which shows that neutrinos have mass." Observation of the neutrino oscillations is the first effect beyond the Standard Model of elementary particles, whose role for the further development of science is exceptionally important. The main steps of the neutrino and the weak interaction investigations, in particular of those awarded by the Nobel Prize in 2015, are presented. The contribution of the Ukrainian scientists to neutrino researches, prospects for their participation in the current and future international neutrino projects are briefly discussed.
Keywords: neutrinos, weak interaction, neutrino mass, neutrino astrophysics, low-background experiments.

 

Language of article: ukrainian

REFERENCES

  1. Lee T.D., Yang C.N. Question of parity conservation in weak interactions. Phys. Rev. 1956. 104(1): 254. http://doi.org/10.1103/PhysRev.104.254
  2. Wu C.S., Ambler E., Hayward R.W., Hoppes D.D., Hudson R.P. Experimental Test of Parity Conservation in Beta Decay. Phys. Rev. 1957. 105(4): 1413. http://doi.org/10.1103/PhysRev.105.1413
  3. Garwin R.L., Lederman L.M., Weinrich M. Observations of the Failure of Conservation of Parity and Charge Conjugation in Meson Decays: The Magnetic Moment of the Free Muon. Phys. Rev. 1957. 105(4): 1415. http://doi.org/10.1103/PhysRev.105.1415
  4. Strumia A., Vissani F. Neutrino masses and mixings and... arXiv:hep-ph/0606054v3, 2010.
  5. Lubimov V.A., Novikov E.G., Nozik V.Z., Tretyakov E.F., Kosik V.S. An estimate of the vb mass from the ß-spectrum of tritium in the valine molecule. Phys. Lett. B. 1980. 94(2): 266. http://doi.org/10.1016/0370-2693(80)90873-4
  6. Robertson R.G.H., Bowles T.J., Stephenson G.J., Wark D.L., Wilkerson J.F., Knapp D.A. Limit on anti-electron-neutrino mass from observation of the beta decay of molecular tritium. Phys. Rev. Lett. 1991. 67(8): 957. http://doi.org/10.1103/PhysRevLett.67.957
  7. Kawakami H. et al. New upper bound on the electron anti-neutrino mass. Phys. Lett. B. 1991. 256(1): 105. http://doi.org/10.1016/0370-2693(91)90226-G
  8. Holzschuh E., Fritschi M., Kündig W. Measurement of the electron neutrino mass from tritium ß-decay. Phys. Lett. B. 1992. 287(4): 381. http://doi.org/10.1016/0370-2693(92)91000-Y
  9. Chengrui C. Tsohsiu H., Dongqi L., Yajun M., Shiping C., Hanchenget S. A possible explanation of the negative values of m2vb obtained from the ß spectrum shape analyses. Int. J. Mod. Phys. A. 1995. 10(19): 2841. http://doi.org/10.1142/S0217751X95001340
  10. Stoeffl W., Decman D.J. Anomalous structure in the ß decay of gaseous molecular tritium. Phys. Rev. Lett. 1995. 75(18): 3237. http://doi.org/10.1103/PhysRevLett.75.3237
  11. Aseev V.N. et al. Upper limit on the electron antineutrino mass from the Troitsk experiment. Phys. Rev. D. 2011. 84(11): 112003. http://doi.org/10.1103/PhysRevD.84.112003
  12. Kraus Ch. et al. Final results from phase II of the Mainz neutrino mass search in tritium b decay. Eur. Phys. J. C. 2005. 40(4): 447. http://doi.org/10.1140/epjc/s2005-02139-7
  13. Drexlin G., Hannen V., Mertens S., Weinheimer C. Current Direct Neutrino Mass Experiments. Adv. High Energy Phys. 2013. 2013: 293986.
  14. Bilenky S.M. The history of neutrino oscillations. Phys. Scripta. 2005. T121: 17. http://doi.org/10.1088/0031-8949/2005/T121/001
  15. Mikheev S.P., Smirnov A.Yu. Resonance enhancement of oscillations in matter and solar neutrino spectroscopy. Soviet Journal of Nuclear Physics. 1985. 42: 913.
  16. Wolfenstein L. Neutrino oscillations in matter. Phys. Rev. D. 1978. 17(9): 2369. http://doi.org/10.1103/PhysRevD.17.2369
  17. Wolfenstein L. Neutrino oscillations and stellar collapse. Phys. Rev. D. 1979. 20(10): 2634. http://doi.org/10.1103/PhysRevD.20.2634
  18. Fukuda Y. et al. Evidence for Oscillation of Atmospheric Neutrinos. Phys. Rev. Lett. 1998. 81(8): 1562. http://doi.org/10.1103/PhysRevLett.81.1562
  19. Ahmad Q. et al. Measurement of the Rate of νe + d → p + p + e Interactions Produced by 8B Solar Neutrinos at the Sudbury Neutrino Observatory. Phys. Rev. Lett. 2001. 87(7): 071301. http://doi.org/10.1103/PhysRevLett.87.071301
  20. McDonald A.B., Klein J.R., Wark D.L. Solving the Solar neutrino problem. Scientific American. 2006. 15: 22. http://doi.org/10.1038/scientificamerican0206-22sp
  21. Mohapatra R.N. et al. Theory of neutrinos: a white paper. Rep. Prog. Phys. 2007. 70(11): 1757. http://doi.org/10.1088/0034-4885/70/11/R02
  22. Smirnov A. The landscape of neutrino physics. Talk at TAUP 2015. (Sept. 7–12, 2015, Turin, Italy).
  23. Bellini G. et al. Neutrinos from the primary proton-proton fusion process in the Sun. Nature. 2014. 512: 383. http://doi.org/10.1038/nature13702
  24. Stancil D.D. et al. Demonstration of communication using neutrinos. Mod. Phys. Lett. A. 2012. 27(12): 1250077. http://doi.org/10.1142/S0217732312500770
  25. Danevich F.A. Investigation of neutrino and weak interactions in double beta decay of atomic nuclei. Visn. Nac. Akad. Nauk Ukr. 2015. (9): 39.