Visn. Nac. Akad. Nauk Ukr. 2015. (7): 41-52
https://doi.org/10.15407/visn2015.07.041

I.S. Chekman, N.A. Gorchakova, K.B. Raslin
Bogomolets National Medical University, Kyiv

NANOCARBON: PHARMACOLOGICAL AND TOXICOLOGICAL PROPERTIES

Abstract:
This article lists some of the allotropes of carbon, presents their descriptions and analyzes their properties. The data about the rational use of nanocarbon in scientific and technical applications is summarized. Special attention is paid to the aspects of biomedical use of the nanocarbon compounds. The history of their discovery and the ways of further development are also presented. The article also touches upon the issue of the necessity of the evaluation of the nanocarbon compounds toxicity for living systems.
Keywords: nanocarbon, graphene, fullerenes, carbon nanotubes, nanocomposites of carbon with metals, toxicity of the nanocarbon compounds.

 

Language of article: ukrainian

References:

  1. Chekman I.S., Ulberg Z.R., Malanchuk V.O. Nanoscience, Nanobiology, Nanopharmacy. (Kyiv, Poligraf+, 2012). [in Ukrainian].
  2. Nebogatikova N.A., Antonova I.V., Prinz V.Ya., Volodin V.A., Zatsepin D.A., Kurmaev E.Z., Zhidkov I.S., Cholakh S.O. Nanotechnologies in Russia. 2014. 9(1–2): 51–59. http://doi.org/10.1134/S1995078014010108
  3. Shpak A.P., Chekhun V.F. (eds.). Nanomaterials and Nanocomposites in Medicine, Biology, Ecology. (Kyiv: Naukova dumka, 2011). [in Russian].
  4. Chekman I.S., Malanchuk V.O, Rybachuk A.V. Basic Nanomedicine. (Kyiv: Logos, 2011). [in Ukrainian].
  5. Chesnokov V.V., Buyanov R.A. Membrany. 2005. 4: 75–79 [in Russian].
  6. Lee J.H., Loya P.E., Lou J., Thomas E.L. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration. Science. 2014. 346(6213): 1092–96. http://doi.org/10.1126/science.1258544
  7. Novoselov K.S., Falko V.I., Colombo L., Gellert P.R., Schwab M.G., Kim K. A roadmap for graphene. Nature. 2012. 490(192): 192–200. http://doi.org/10.1038/nature11458
  8. Nair R.R., Ren W., Jalil R., Riaz I., Kravets V.G., Britnell L., Blake P., Schedin F., Mayorov A.S., Yuan S., Katsnelson M.I., Cheng H.M., Strupinski W., Bulusheva L.G., Okotrub A.V., Grigorieva I.V., Grigorenko A.N., Novoselov K.S., Geim A.K. Fluorographene: A two-dimensional counterpart of teflon. Small. 2010. 6(24): 2877–84. http://doi.org/10.1002/smll.201001555
  9. Bendjemil B., Lankar A., Messadi D., Vrel D. Pharmacological molecule based on nanocarbon container encapsulated ferromagnet by combustion synthesis for cancer therapy. Univ. J. Chem. 2014. 2(3): 30–39.
  10. Chen S., Zhu J.W., Wang X. One-step synthesis of graphene-cobalt hydroxide nanocomposites and their electrochemical properties. J. Phys. Chem. C. 2010. 114: 11829–34. http://doi.org/10.1021/jp1048474
  11. Antonova I.V., Mutilin S.V., Seleznev V.A., Soots R.A., Volodin V.A., Prinz V.Y. Extremely high response of electrostatically exfoliated few layer graphene to ammonia adsorption. Nanotechnology. 2011. 22(28): 285502. http://doi.org/10.1088/0957-4484/22/28/285502
  12. Baby T.T., Aravind S.S.J., Arockiadoss T., Rakhi R.B., Ramaprabhu S. Metal decorated graphene nanosheets as immobilization matrix for amperometric glucose biosensor. Sens. Actuators B. 2010. 145: 71–77. http://doi.org/10.1016/j.snb.2009.11.022
  13. Cheng S.-H., Zou K., Okino F., Gutierrez H.R., Gupta A., Shen N., Eklund P.C., Sofo J.O., Zhu J. Reversible fluorination of graphene: evidence of a two-dimensional wide bandgap semiconductor. J. Phys. Rev. B. 2010. 81: 205435. http://doi.org/10.1103/PhysRevB.81.205435
  14. Tyagi M.G., Albert A.P., Tyagi V., Hema R. Graphene nanomaterials and applications in bio-medical sciences. World J. Pharm. Pharm. Sci. 2013. 3(1): 339–45.
  15. Li D., Muller M.B., Gilje S., Kaner R.B., Wallace G.G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008. 3: 101–105. http://doi.org/10.1038/nnano.2007.451
  16. Chng E.L.K., Pumera M. Toxicity of graphene related materials and transition metal dichalcogenides. RSC Advances. 2015. 5(4): 3074–80. http://doi.org/10.1039/C4RA12624F
  17. Saxena M., Sarkar S. Involuntary graphene intake with food and medicine. The Royal Society of Chemistry. 2014. 4: 30162–67. http://doi.org/10.1039/c4ra04022h
  18. Saxena M., Maitya S., Sarkar S. Carbon nanoparticles in ‘biochar’ boost wheat (Triticum aestivum) plant growth. RSC Advances. 2014. 4(75): 39948–54. http://doi.org/10.1039/C4RA06535B
  19. Chekman I.S. Nanopharmacology. (Kyiv: Zadruga, 2011). [in Ukrainian].
  20. Donaldson K., Aitken R., Tran L. Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol. Sci. 2006. 92(1): 5–22. http://doi.org/10.1093/toxsci/kfj130
  21. Guldi D.M., Prato M. Excited-state properties of C60 fullerene derivatives. Acc. Chem. Res. 2000. 33(10): 695–703. http://doi.org/10.1021/ar990144m
  22. Zhai H.J., Zhao Y.F., Li W.L., Chen Q., Bai H., Hu H.-S., Piazza Z.A., Tian W.-J., Lu H.-G., Wu Y.-B., Mu Y.-W., Wei G.-F., Liu Z.-P., Li J., Li S.-D., Wang L.-S. Observation of an all-boron fullerene. Nature Chemistry. 2014. 6: 727–31. http://doi.org/10.1038/nchem.1999
  23. Satoh M., Takayanagi I. Pharmacological studies on fullerene [C60], a novel carbon allotrope and its derivatives. J. Pharmacol. Sci. 2006. 100(5): 513–18. http://doi.org/10.1254/jphs.CPJ06002X
  24. Nakamura F., Isobe H. Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc. Chem. Res. 2003. 3(11): 807–15. http://doi.org/10.1021/ar030027y
  25. Gharbi N., Pressac M., Hadchouel M., Szwarc H., Wilson S.R., Moussa F. [60] Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett. 2005. 5(12): 2578–85. http://doi.org/10.1021/nl051866b
  26. Manzetti S., Behzadi H., Andersen O., van der Spoe D. Fullerenes toxicity and electronic properties. Environ. Chem. Lett. 2013. 11: 105–18. http://doi.org/10.1007/s10311-012-0387-x
  27. Simate G.S., Yah C.S. The use of carbon nanotubes in medical applications – is it a success story? Occup. Med. Health. 2014. 2(1): 146–47.
  28. Lacerda L., Bianco A., Prato M. Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv. Drug Deliv. Rev. 2006. 58(14): 1460–70. http://doi.org/10.1016/j.addr.2006.09.015
  29. Bendjemil B. Electronic and optical properties of the express purified SWCNTs produced by HiPCO process. Int. J. Nanoelectr. Mater. Sci. 2009. 2: 173–82.
  30. Banerjee S., Khan M.G., Wong S.S. Rational chemical strategies for carbon nanotube functionalization. Chem. Eur. J. 2003. 9(9): 1898–908. http://doi.org/10.1002/chem.200204618
  31. Kam N.W., Liu Z., Dai H. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc. 2005. 127: 12492–93. http://doi.org/10.1021/ja053962k
  32. Hillebrenner H., Buyukserin F., Stewart J.D., Martin C.R. Template synthesized nanotubes for biomedical delivery applications. Nanomedicine. 2006. 1(1): 39–50. http://doi.org/10.2217/17435889.1.1.39
  33. Jain K.K. Nanomedicine: application of nanobiotechnology in medical practice. Med. Princ. Pract. 2008. 17(2): 89–101. http://doi.org/10.1159/000112961
  34. Pastorin G., Kostarelos K., Prato M., Bianco A. Functionalized carbon nanotubes: towards the delivery of therapeutic molecules. J. Biomed. Nanotechnol. 2005. 1: 1–10. http://doi.org/10.1166/jbn.2005.017
  35. Charlier J.C., Blasé X., Roche S. Electronic and transport properties of nanotubes. Rev. Modern Phys. 2007. 79(2): 677–732. http://doi.org/10.1103/RevModPhys.79.677
  36. Qiang Y., Antony J., Sharma A., Nutting J., Sikes D., Meyer D. Iron/iron oxide core-shell nanoclusters for biomedical applications. J. Nanoparticle Res. 2006. 8: 489–96. http://doi.org/10.1007/s11051-005-9011-3
  37. Dąbrowska A., Huczko A., Soszyński M., Bendjemil B., Micciulla F., Sacco I., Coderoni L., Bellucci S. Ultra-fast efficient synthesis of one-dimensional nanostructures. Phys. Status Solidi B. 2011. 248(11): 2704–07. http://doi.org/10.1002/pssb.201100054
  38. Wen W., Wu J. Nanomaterials via solution combustion synthesis: a step nearer to controllability. RSC Advances. 2014. 4(101): 58090–100. http://doi.org/10.1039/C4RA10145F
  39. Chekhun V., Gorobets S., Gorobets O., Demyanenko I. Magnetic nanostructures in neoplasm cells. Herald of the National Academy of Sciences of Ukraine. 2011. 11: 13–20 [in Ukrainian].
  40. Chen S., Li Y., Guo C., Wang J., Ma J., Liang X., Yang L.R,. Liu H.Z. Temperature-Responsive Magnetite / PEO–PPO–PEO block copolymer nanoparticles for controlled drug targeting delivery. Langmuir. 2007. 23: 12669–76. http://doi.org/10.1021/la702049d
  41. Shin T.H., Choi Y., Kim S., Cheon J. Recent advances in magnetic nanoparticles-based multi-modal imaging. Chem. Soc. Rev. 2015. 10: 315–56. http://doi.org/10.1039/c4cs00345d
  42. Madani S.Y., Naderi N., Dissanayake O., Tan A., Seifalian A.M. A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int. J. Nanomedicine. 2011. 6: 2963–79.
  43. Al Faraj A., Shaik A.P., Shaik A.S. Magnetic single-walled carbon nanotubes as efficient drug delivery nanocarriers in breast cancer murine model: noninvasive monitoring using diffusion-weighted magnetic resonance imaging as sensitive imaging biomarker. Int. J. Nanomedicine. 2015. 10: 157–68.
  44. Drake P., Cho H.J., Shih P.S. Gd-doped iron-oxide nanoparticles for tumor therapy via magnetic field hyperthermia. J. Mater. Chem. 2007. 17: 4914–18. http://doi.org/10.1039/b711962c
  45. Abaeva L.F., Shumskiy V.I., Petritskaya E.N. Almanakh klinicheskoy meditsiny (Medical Almanac). 2010. 22: 10 [in Russian].
  46. Latyshevskaya N.I., Strekalova A.S. Vestnik. Volgogradskogo Universiteta. Ser. 3. 2011. 3(1): 224 [in Russian].
  47. Karkishchenko N.N. Biomeditsina (Biomedicine). 2009. 1(1): 5 [in Russian].
  48. Rybalkin S.P., Mikhina L.V., Onatskiy N.M. Prikladnaya toksikologiya. 2013. 4(1): 32 [in Russian].
  49. Gusev A.A., Rodayev V.V., Vasyukova I.A. Vestnik Tambovskogo Universiteta. 2013. 18(1): 299 [in Russian].
  50. Ziganshin A.U., Ziganshina L.E. Kazanskiy meditsinskiy zhurnal. 2008. 89(1): 1 [in Russian].
  51. Fatkhutdinova L.M., Zalyalov R.R., Oslopov V.N. Kazanskiy meditsinskiy zhurnal. 2009. 90(4): 578 [in Russian].
  52. Velichkovskiy B.T. Bull. VSNC SO RAMN. 2009. 4: 72 [in Russian].
  53. Khaliullin T.O., Kisin Ye.R., Zalyalov R.R. Toksikologicheskiy vestnik. 2013. 4: 17 [in Russian].
  54. Galano A. Carbon nanotubes: promising agents against free radicals. Nanoscale. 2010. 2: 373–80. http://doi.org/10.1039/b9nr00364a
  55. Erdely A., Dahm M., Chen B.T. et al. Carbon nanotube dosimetry: from workplace exposure assessment to inhalation toxicology. Particle and Fibre Toxicology. 2013. 10: 53. http://doi.org/10.1186/1743-8977-10-53